MagickCore 6.9.13
Loading...
Searching...
No Matches
morphology.c
1/*
2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3% %
4% %
5% %
6% M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y %
7% MM MM O O R R P P H H O O L O O G Y Y %
8% M M M O O RRRR PPPP HHHHH O O L O O G GGG Y %
9% M M O O R R P H H O O L O O G G Y %
10% M M OOO R R P H H OOO LLLLL OOO GGG Y %
11% %
12% %
13% MagickCore Morphology Methods %
14% %
15% Software Design %
16% Anthony Thyssen %
17% January 2010 %
18% %
19% %
20% Copyright 1999 ImageMagick Studio LLC, a non-profit organization %
21% dedicated to making software imaging solutions freely available. %
22% %
23% You may not use this file except in compliance with the License. You may %
24% obtain a copy of the License at %
25% %
26% https://imagemagick.org/script/license.php %
27% %
28% Unless required by applicable law or agreed to in writing, software %
29% distributed under the License is distributed on an "AS IS" BASIS, %
30% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31% See the License for the specific language governing permissions and %
32% limitations under the License. %
33% %
34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35%
36% Morphology is the application of various kernels, of any size or shape, to an
37% image in various ways (typically binary, but not always).
38%
39% Convolution (weighted sum or average) is just one specific type of
40% morphology. Just one that is very common for image blurring and sharpening
41% effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring.
42%
43% This module provides not only a general morphology function, and the ability
44% to apply more advanced or iterative morphologies, but also functions for the
45% generation of many different types of kernel arrays from user supplied
46% arguments. Prehaps even the generation of a kernel from a small image.
47*/
48
49
50/*
51 Include declarations.
52*/
53#include "magick/studio.h"
54#include "magick/artifact.h"
55#include "magick/cache-view.h"
56#include "magick/color-private.h"
57#include "magick/channel.h"
58#include "magick/enhance.h"
59#include "magick/exception.h"
60#include "magick/exception-private.h"
61#include "magick/gem.h"
62#include "magick/hashmap.h"
63#include "magick/image.h"
64#include "magick/image-private.h"
65#include "magick/list.h"
66#include "magick/magick.h"
67#include "magick/memory_.h"
68#include "magick/memory-private.h"
69#include "magick/monitor-private.h"
70#include "magick/morphology.h"
71#include "magick/morphology-private.h"
72#include "magick/option.h"
73#include "magick/pixel-private.h"
74#include "magick/prepress.h"
75#include "magick/quantize.h"
76#include "magick/registry.h"
77#include "magick/resource_.h"
78#include "magick/semaphore.h"
79#include "magick/splay-tree.h"
80#include "magick/statistic.h"
81#include "magick/string_.h"
82#include "magick/string-private.h"
83#include "magick/thread-private.h"
84#include "magick/token.h"
85#include "magick/utility.h"
86
87
88/*
89 Other global definitions used by module.
90*/
91#define Minimize(assign,value) assign=MagickMin(assign,value)
92#define Maximize(assign,value) assign=MagickMax(assign,value)
93
94/* Integer Factorial Function - for a Binomial kernel */
95#if 1
96static inline size_t fact(size_t n)
97{
98 size_t l,f;
99 for(f=1, l=2; l <= n; f=f*l, l++);
100 return(f);
101}
102#elif 1 /* glibc floating point alternatives */
103#define fact(n) ((size_t)tgamma((double)n+1))
104#else
105#define fact(n) ((size_t)lgamma((double)n+1))
106#endif
107
108/* Currently these are only internal to this module */
109static void
110 CalcKernelMetaData(KernelInfo *),
111 ExpandMirrorKernelInfo(KernelInfo *),
112 ExpandRotateKernelInfo(KernelInfo *, const double),
113 RotateKernelInfo(KernelInfo *, double);
114
115
116
117/* Quick function to find last kernel in a kernel list */
118static inline KernelInfo *LastKernelInfo(KernelInfo *kernel)
119{
120 while (kernel->next != (KernelInfo *) NULL)
121 kernel=kernel->next;
122 return(kernel);
123}
124
125/*
126%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
127% %
128% %
129% %
130% A c q u i r e K e r n e l I n f o %
131% %
132% %
133% %
134%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
135%
136% AcquireKernelInfo() takes the given string (generally supplied by the
137% user) and converts it into a Morphology/Convolution Kernel. This allows
138% users to specify a kernel from a number of pre-defined kernels, or to fully
139% specify their own kernel for a specific Convolution or Morphology
140% Operation.
141%
142% The kernel so generated can be any rectangular array of floating point
143% values (doubles) with the 'control point' or 'pixel being affected'
144% anywhere within that array of values.
145%
146% Previously IM was restricted to a square of odd size using the exact
147% center as origin, this is no longer the case, and any rectangular kernel
148% with any value being declared the origin. This in turn allows the use of
149% highly asymmetrical kernels.
150%
151% The floating point values in the kernel can also include a special value
152% known as 'nan' or 'not a number' to indicate that this value is not part
153% of the kernel array. This allows you to shaped the kernel within its
154% rectangular area. That is 'nan' values provide a 'mask' for the kernel
155% shape. However at least one non-nan value must be provided for correct
156% working of a kernel.
157%
158% The returned kernel should be freed using the DestroyKernelInfo method
159% when you are finished with it. Do not free this memory yourself.
160%
161% Input kernel definition strings can consist of any of three types.
162%
163% "name:args[[@><]"
164% Select from one of the built in kernels, using the name and
165% geometry arguments supplied. See AcquireKernelBuiltIn()
166%
167% "WxH[+X+Y][@><]:num, num, num ..."
168% a kernel of size W by H, with W*H floating point numbers following.
169% the 'center' can be optionally be defined at +X+Y (such that +0+0
170% is top left corner). If not defined the pixel in the center, for
171% odd sizes, or to the immediate top or left of center for even sizes
172% is automatically selected.
173%
174% "num, num, num, num, ..."
175% list of floating point numbers defining an 'old style' odd sized
176% square kernel. At least 9 values should be provided for a 3x3
177% square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc.
178% Values can be space or comma separated. This is not recommended.
179%
180% You can define a 'list of kernels' which can be used by some morphology
181% operators A list is defined as a semi-colon separated list kernels.
182%
183% " kernel ; kernel ; kernel ; "
184%
185% Any extra ';' characters, at start, end or between kernel definitions are
186% simply ignored.
187%
188% The special flags will expand a single kernel, into a list of rotated
189% kernels. A '@' flag will expand a 3x3 kernel into a list of 45-degree
190% cyclic rotations, while a '>' will generate a list of 90-degree rotations.
191% The '<' also expands using 90-degree rotates, but giving a 180-degree
192% reflected kernel before the +/- 90-degree rotations, which can be important
193% for Thinning operations.
194%
195% Note that 'name' kernels will start with an alphabetic character while the
196% new kernel specification has a ':' character in its specification string.
197% If neither is the case, it is assumed an old style of a simple list of
198% numbers generating a odd-sized square kernel has been given.
199%
200% The format of the AcquireKernel method is:
201%
202% KernelInfo *AcquireKernelInfo(const char *kernel_string)
203%
204% A description of each parameter follows:
205%
206% o kernel_string: the Morphology/Convolution kernel wanted.
207%
208*/
209
210/* This was separated so that it could be used as a separate
211** array input handling function, such as for -color-matrix
212*/
213static KernelInfo *ParseKernelArray(const char *kernel_string)
214{
216 *kernel;
217
218 char
219 token[MaxTextExtent];
220
221 const char
222 *p,
223 *end;
224
225 ssize_t
226 i;
227
228 double
229 nan = sqrt(-1.0); /* Special Value : Not A Number */
230
231 MagickStatusType
232 flags;
233
235 args;
236
237 kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
238 if (kernel == (KernelInfo *) NULL)
239 return(kernel);
240 (void) memset(kernel,0,sizeof(*kernel));
241 kernel->minimum = kernel->maximum = kernel->angle = 0.0;
242 kernel->negative_range = kernel->positive_range = 0.0;
243 kernel->type = UserDefinedKernel;
244 kernel->next = (KernelInfo *) NULL;
245 kernel->signature = MagickCoreSignature;
246 if (kernel_string == (const char *) NULL)
247 return(kernel);
248
249 /* find end of this specific kernel definition string */
250 end = strchr(kernel_string, ';');
251 if ( end == (char *) NULL )
252 end = strchr(kernel_string, '\0');
253
254 /* clear flags - for Expanding kernel lists through rotations */
255 flags = NoValue;
256
257 /* Has a ':' in argument - New user kernel specification
258 FUTURE: this split on ':' could be done by StringToken()
259 */
260 p = strchr(kernel_string, ':');
261 if ( p != (char *) NULL && p < end)
262 {
263 /* ParseGeometry() needs the geometry separated! -- Arrgghh */
264 (void) memcpy(token, kernel_string, (size_t) (p-kernel_string));
265 token[p-kernel_string] = '\0';
266 SetGeometryInfo(&args);
267 flags = ParseGeometry(token, &args);
268
269 /* Size handling and checks of geometry settings */
270 if ( (flags & WidthValue) == 0 ) /* if no width then */
271 args.rho = args.sigma; /* then width = height */
272 if ( args.rho < 1.0 ) /* if width too small */
273 args.rho = 1.0; /* then width = 1 */
274 if ( args.sigma < 1.0 ) /* if height too small */
275 args.sigma = args.rho; /* then height = width */
276 kernel->width = (size_t)args.rho;
277 kernel->height = (size_t)args.sigma;
278
279 /* Offset Handling and Checks */
280 if ( args.xi < 0.0 || args.psi < 0.0 )
281 return(DestroyKernelInfo(kernel));
282 kernel->x = ((flags & XValue)!=0) ? (ssize_t)args.xi
283 : (ssize_t) (kernel->width-1)/2;
284 kernel->y = ((flags & YValue)!=0) ? (ssize_t)args.psi
285 : (ssize_t) (kernel->height-1)/2;
286 if ( kernel->x >= (ssize_t) kernel->width ||
287 kernel->y >= (ssize_t) kernel->height )
288 return(DestroyKernelInfo(kernel));
289
290 p++; /* advance beyond the ':' */
291 }
292 else
293 { /* ELSE - Old old specification, forming odd-square kernel */
294 /* count up number of values given */
295 p=(const char *) kernel_string;
296 while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\''))
297 p++; /* ignore "'" chars for convolve filter usage - Cristy */
298 for (i=0; p < end; i++)
299 {
300 (void) GetNextToken(p,&p,MaxTextExtent,token);
301 if (*token == ',')
302 (void) GetNextToken(p,&p,MaxTextExtent,token);
303 }
304 /* set the size of the kernel - old sized square */
305 kernel->width = kernel->height= (size_t) sqrt((double) i+1.0);
306 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
307 p=(const char *) kernel_string;
308 while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\''))
309 p++; /* ignore "'" chars for convolve filter usage - Cristy */
310 }
311
312 /* Read in the kernel values from rest of input string argument */
313 kernel->values=(double *) MagickAssumeAligned(AcquireAlignedMemory(
314 kernel->width,kernel->height*sizeof(*kernel->values)));
315 if (kernel->values == (double *) NULL)
316 return(DestroyKernelInfo(kernel));
317 kernel->minimum=MagickMaximumValue;
318 kernel->maximum=(-MagickMaximumValue);
319 kernel->negative_range = kernel->positive_range = 0.0;
320 for (i=0; (i < (ssize_t) (kernel->width*kernel->height)) && (p < end); i++)
321 {
322 (void) GetNextToken(p,&p,MaxTextExtent,token);
323 if (*token == ',')
324 (void) GetNextToken(p,&p,MaxTextExtent,token);
325 if ( LocaleCompare("nan",token) == 0
326 || LocaleCompare("-",token) == 0 ) {
327 kernel->values[i] = nan; /* this value is not part of neighbourhood */
328 }
329 else {
330 kernel->values[i] = StringToDouble(token,(char **) NULL);
331 ( kernel->values[i] < 0)
332 ? ( kernel->negative_range += kernel->values[i] )
333 : ( kernel->positive_range += kernel->values[i] );
334 Minimize(kernel->minimum, kernel->values[i]);
335 Maximize(kernel->maximum, kernel->values[i]);
336 }
337 }
338
339 /* sanity check -- no more values in kernel definition */
340 (void) GetNextToken(p,&p,MaxTextExtent,token);
341 if ( *token != '\0' && *token != ';' && *token != '\'' )
342 return(DestroyKernelInfo(kernel));
343
344#if 0
345 /* this was the old method of handling a incomplete kernel */
346 if ( i < (ssize_t) (kernel->width*kernel->height) ) {
347 Minimize(kernel->minimum, kernel->values[i]);
348 Maximize(kernel->maximum, kernel->values[i]);
349 for ( ; i < (ssize_t) (kernel->width*kernel->height); i++)
350 kernel->values[i]=0.0;
351 }
352#else
353 /* Number of values for kernel was not enough - Report Error */
354 if ( i < (ssize_t) (kernel->width*kernel->height) )
355 return(DestroyKernelInfo(kernel));
356#endif
357
358 /* check that we received at least one real (non-nan) value! */
359 if (kernel->minimum == MagickMaximumValue)
360 return(DestroyKernelInfo(kernel));
361
362 if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel size */
363 ExpandRotateKernelInfo(kernel, 45.0); /* cyclic rotate 3x3 kernels */
364 else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */
365 ExpandRotateKernelInfo(kernel, 90.0); /* 90 degree rotate of kernel */
366 else if ( (flags & LessValue) != 0 ) /* '<' symbol in kernel args */
367 ExpandMirrorKernelInfo(kernel); /* 90 degree mirror rotate */
368
369 return(kernel);
370}
371
372static KernelInfo *ParseKernelName(const char *kernel_string)
373{
374 char
375 token[MaxTextExtent] = "";
376
377 const char
378 *p,
379 *end;
380
382 args;
383
385 *kernel;
386
387 MagickStatusType
388 flags;
389
390 ssize_t
391 type;
392
393 /* Parse special 'named' kernel */
394 (void) GetNextToken(kernel_string,&p,MaxTextExtent,token);
395 type=ParseCommandOption(MagickKernelOptions,MagickFalse,token);
396 if ( type < 0 || type == UserDefinedKernel )
397 return((KernelInfo *) NULL); /* not a valid named kernel */
398
399 while (((isspace((int) ((unsigned char) *p)) != 0) ||
400 (*p == ',') || (*p == ':' )) && (*p != '\0') && (*p != ';'))
401 p++;
402
403 end = strchr(p, ';'); /* end of this kernel definition */
404 if ( end == (char *) NULL )
405 end = strchr(p, '\0');
406
407 /* ParseGeometry() needs the geometry separated! -- Arrgghh */
408 (void) memcpy(token, p, (size_t) (end-p));
409 token[end-p] = '\0';
410 SetGeometryInfo(&args);
411 flags = ParseGeometry(token, &args);
412
413#if 0
414 /* For Debugging Geometry Input */
415 (void) FormatLocaleFile(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n",
416 flags, args.rho, args.sigma, args.xi, args.psi );
417#endif
418
419 /* special handling of missing values in input string */
420 switch( type ) {
421 /* Shape Kernel Defaults */
422 case UnityKernel:
423 if ( (flags & WidthValue) == 0 )
424 args.rho = 1.0; /* Default scale = 1.0, zero is valid */
425 break;
426 case SquareKernel:
427 case DiamondKernel:
428 case OctagonKernel:
429 case DiskKernel:
430 case PlusKernel:
431 case CrossKernel:
432 if ( (flags & HeightValue) == 0 )
433 args.sigma = 1.0; /* Default scale = 1.0, zero is valid */
434 break;
435 case RingKernel:
436 if ( (flags & XValue) == 0 )
437 args.xi = 1.0; /* Default scale = 1.0, zero is valid */
438 break;
439 case RectangleKernel: /* Rectangle - set size defaults */
440 if ( (flags & WidthValue) == 0 ) /* if no width then */
441 args.rho = args.sigma; /* then width = height */
442 if ( args.rho < 1.0 ) /* if width too small */
443 args.rho = 3; /* then width = 3 */
444 if ( args.sigma < 1.0 ) /* if height too small */
445 args.sigma = args.rho; /* then height = width */
446 if ( (flags & XValue) == 0 ) /* center offset if not defined */
447 args.xi = (double)(((ssize_t)args.rho-1)/2);
448 if ( (flags & YValue) == 0 )
449 args.psi = (double)(((ssize_t)args.sigma-1)/2);
450 break;
451 /* Distance Kernel Defaults */
452 case ChebyshevKernel:
453 case ManhattanKernel:
454 case OctagonalKernel:
455 case EuclideanKernel:
456 if ( (flags & HeightValue) == 0 ) /* no distance scale */
457 args.sigma = 100.0; /* default distance scaling */
458 else if ( (flags & AspectValue ) != 0 ) /* '!' flag */
459 args.sigma = (double) QuantumRange/(args.sigma+1); /* maximum pixel distance */
460 else if ( (flags & PercentValue ) != 0 ) /* '%' flag */
461 args.sigma *= (double) QuantumRange/100.0; /* percentage of color range */
462 break;
463 default:
464 break;
465 }
466
467 kernel = AcquireKernelBuiltIn((KernelInfoType)type, &args);
468 if ( kernel == (KernelInfo *) NULL )
469 return(kernel);
470
471 /* global expand to rotated kernel list - only for single kernels */
472 if ( kernel->next == (KernelInfo *) NULL ) {
473 if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel args */
474 ExpandRotateKernelInfo(kernel, 45.0);
475 else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */
476 ExpandRotateKernelInfo(kernel, 90.0);
477 else if ( (flags & LessValue) != 0 ) /* '<' symbol in kernel args */
478 ExpandMirrorKernelInfo(kernel);
479 }
480
481 return(kernel);
482}
483
484MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string)
485{
487 *kernel,
488 *new_kernel;
489
490 char
491 *kernel_cache,
492 token[MaxTextExtent];
493
494 const char
495 *p;
496
497 if (kernel_string == (const char *) NULL)
498 return(ParseKernelArray(kernel_string));
499 p=kernel_string;
500 kernel_cache=(char *) NULL;
501 if (*kernel_string == '@')
502 {
503 ExceptionInfo *exception=AcquireExceptionInfo();
504 kernel_cache=FileToString(kernel_string,~0UL,exception);
505 exception=DestroyExceptionInfo(exception);
506 if (kernel_cache == (char *) NULL)
507 return((KernelInfo *) NULL);
508 p=(const char *) kernel_cache;
509 }
510 kernel=NULL;
511
512 while (GetNextToken(p,(const char **) NULL,MaxTextExtent,token), *token != '\0')
513 {
514 /* ignore extra or multiple ';' kernel separators */
515 if (*token != ';')
516 {
517 /* tokens starting with alpha is a Named kernel */
518 if (isalpha((int) ((unsigned char) *token)) != 0)
519 new_kernel=ParseKernelName(p);
520 else /* otherwise a user defined kernel array */
521 new_kernel=ParseKernelArray(p);
522
523 /* Error handling -- this is not proper error handling! */
524 if (new_kernel == (KernelInfo *) NULL)
525 {
526 if (kernel != (KernelInfo *) NULL)
527 kernel=DestroyKernelInfo(kernel);
528 return((KernelInfo *) NULL);
529 }
530
531 /* initialise or append the kernel list */
532 if (kernel == (KernelInfo *) NULL)
533 kernel=new_kernel;
534 else
535 LastKernelInfo(kernel)->next=new_kernel;
536 }
537
538 /* look for the next kernel in list */
539 p=strchr(p,';');
540 if (p == (char *) NULL)
541 break;
542 p++;
543 }
544 if (kernel_cache != (char *) NULL)
545 kernel_cache=DestroyString(kernel_cache);
546 return(kernel);
547}
548
549/*
550%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
551% %
552% %
553% %
554+ A c q u i r e K e r n e l B u i l t I n %
555% %
556% %
557% %
558%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
559%
560% AcquireKernelBuiltIn() returned one of the 'named' built-in types of
561% kernels used for special purposes such as gaussian blurring, skeleton
562% pruning, and edge distance determination.
563%
564% They take a KernelType, and a set of geometry style arguments, which were
565% typically decoded from a user supplied string, or from a more complex
566% Morphology Method that was requested.
567%
568% The format of the AcquireKernelBuiltIn method is:
569%
570% KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type,
571% const GeometryInfo args)
572%
573% A description of each parameter follows:
574%
575% o type: the pre-defined type of kernel wanted
576%
577% o args: arguments defining or modifying the kernel
578%
579% Convolution Kernels
580%
581% Unity
582% The a No-Op or Scaling single element kernel.
583%
584% Gaussian:{radius},{sigma}
585% Generate a two-dimensional gaussian kernel, as used by -gaussian.
586% The sigma for the curve is required. The resulting kernel is
587% normalized,
588%
589% If 'sigma' is zero, you get a single pixel on a field of zeros.
590%
591% NOTE: that the 'radius' is optional, but if provided can limit (clip)
592% the final size of the resulting kernel to a square 2*radius+1 in size.
593% The radius should be at least 2 times that of the sigma value, or
594% sever clipping and aliasing may result. If not given or set to 0 the
595% radius will be determined so as to produce the best minimal error
596% result, which is usually much larger than is normally needed.
597%
598% LoG:{radius},{sigma}
599% "Laplacian of a Gaussian" or "Mexican Hat" Kernel.
600% The supposed ideal edge detection, zero-summing kernel.
601%
602% An alternative to this kernel is to use a "DoG" with a sigma ratio of
603% approx 1.6 (according to wikipedia).
604%
605% DoG:{radius},{sigma1},{sigma2}
606% "Difference of Gaussians" Kernel.
607% As "Gaussian" but with a gaussian produced by 'sigma2' subtracted
608% from the gaussian produced by 'sigma1'. Typically sigma2 > sigma1.
609% The result is a zero-summing kernel.
610%
611% Blur:{radius},{sigma}[,{angle}]
612% Generates a 1 dimensional or linear gaussian blur, at the angle given
613% (current restricted to orthogonal angles). If a 'radius' is given the
614% kernel is clipped to a width of 2*radius+1. Kernel can be rotated
615% by a 90 degree angle.
616%
617% If 'sigma' is zero, you get a single pixel on a field of zeros.
618%
619% Note that two convolutions with two "Blur" kernels perpendicular to
620% each other, is equivalent to a far larger "Gaussian" kernel with the
621% same sigma value, However it is much faster to apply. This is how the
622% "-blur" operator actually works.
623%
624% Comet:{width},{sigma},{angle}
625% Blur in one direction only, much like how a bright object leaves
626% a comet like trail. The Kernel is actually half a gaussian curve,
627% Adding two such blurs in opposite directions produces a Blur Kernel.
628% Angle can be rotated in multiples of 90 degrees.
629%
630% Note that the first argument is the width of the kernel and not the
631% radius of the kernel.
632%
633% Binomial:[{radius}]
634% Generate a discrete kernel using a 2 dimentional Pascel's Triangle
635% of values. Used for special forma of image filters
636%
637% # Still to be implemented...
638% #
639% # Filter2D
640% # Filter1D
641% # Set kernel values using a resize filter, and given scale (sigma)
642% # Cylindrical or Linear. Is this possible with an image?
643% #
644%
645% Named Constant Convolution Kernels
646%
647% All these are unscaled, zero-summing kernels by default. As such for
648% non-HDRI version of ImageMagick some form of normalization, user scaling,
649% and biasing the results is recommended, to prevent the resulting image
650% being 'clipped'.
651%
652% The 3x3 kernels (most of these) can be circularly rotated in multiples of
653% 45 degrees to generate the 8 angled variants of each of the kernels.
654%
655% Laplacian:{type}
656% Discrete Laplacian Kernels, (without normalization)
657% Type 0 : 3x3 with center:8 surrounded by -1 (8 neighbourhood)
658% Type 1 : 3x3 with center:4 edge:-1 corner:0 (4 neighbourhood)
659% Type 2 : 3x3 with center:4 edge:1 corner:-2
660% Type 3 : 3x3 with center:4 edge:-2 corner:1
661% Type 5 : 5x5 laplacian
662% Type 7 : 7x7 laplacian
663% Type 15 : 5x5 LoG (sigma approx 1.4)
664% Type 19 : 9x9 LoG (sigma approx 1.4)
665%
666% Sobel:{angle}
667% Sobel 'Edge' convolution kernel (3x3)
668% | -1, 0, 1 |
669% | -2, 0, 2 |
670% | -1, 0, 1 |
671%
672% Roberts:{angle}
673% Roberts convolution kernel (3x3)
674% | 0, 0, 0 |
675% | -1, 1, 0 |
676% | 0, 0, 0 |
677%
678% Prewitt:{angle}
679% Prewitt Edge convolution kernel (3x3)
680% | -1, 0, 1 |
681% | -1, 0, 1 |
682% | -1, 0, 1 |
683%
684% Compass:{angle}
685% Prewitt's "Compass" convolution kernel (3x3)
686% | -1, 1, 1 |
687% | -1,-2, 1 |
688% | -1, 1, 1 |
689%
690% Kirsch:{angle}
691% Kirsch's "Compass" convolution kernel (3x3)
692% | -3,-3, 5 |
693% | -3, 0, 5 |
694% | -3,-3, 5 |
695%
696% FreiChen:{angle}
697% Frei-Chen Edge Detector is based on a kernel that is similar to
698% the Sobel Kernel, but is designed to be isotropic. That is it takes
699% into account the distance of the diagonal in the kernel.
700%
701% | 1, 0, -1 |
702% | sqrt(2), 0, -sqrt(2) |
703% | 1, 0, -1 |
704%
705% FreiChen:{type},{angle}
706%
707% Frei-Chen Pre-weighted kernels...
708%
709% Type 0: default un-normalized version shown above.
710%
711% Type 1: Orthogonal Kernel (same as type 11 below)
712% | 1, 0, -1 |
713% | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2)
714% | 1, 0, -1 |
715%
716% Type 2: Diagonal form of Kernel...
717% | 1, sqrt(2), 0 |
718% | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2)
719% | 0, -sqrt(2) -1 |
720%
721% However this kernel is als at the heart of the FreiChen Edge Detection
722% Process which uses a set of 9 specially weighted kernel. These 9
723% kernels not be normalized, but directly applied to the image. The
724% results is then added together, to produce the intensity of an edge in
725% a specific direction. The square root of the pixel value can then be
726% taken as the cosine of the edge, and at least 2 such runs at 90 degrees
727% from each other, both the direction and the strength of the edge can be
728% determined.
729%
730% Type 10: All 9 of the following pre-weighted kernels...
731%
732% Type 11: | 1, 0, -1 |
733% | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2)
734% | 1, 0, -1 |
735%
736% Type 12: | 1, sqrt(2), 1 |
737% | 0, 0, 0 | / 2*sqrt(2)
738% | 1, sqrt(2), 1 |
739%
740% Type 13: | sqrt(2), -1, 0 |
741% | -1, 0, 1 | / 2*sqrt(2)
742% | 0, 1, -sqrt(2) |
743%
744% Type 14: | 0, 1, -sqrt(2) |
745% | -1, 0, 1 | / 2*sqrt(2)
746% | sqrt(2), -1, 0 |
747%
748% Type 15: | 0, -1, 0 |
749% | 1, 0, 1 | / 2
750% | 0, -1, 0 |
751%
752% Type 16: | 1, 0, -1 |
753% | 0, 0, 0 | / 2
754% | -1, 0, 1 |
755%
756% Type 17: | 1, -2, 1 |
757% | -2, 4, -2 | / 6
758% | -1, -2, 1 |
759%
760% Type 18: | -2, 1, -2 |
761% | 1, 4, 1 | / 6
762% | -2, 1, -2 |
763%
764% Type 19: | 1, 1, 1 |
765% | 1, 1, 1 | / 3
766% | 1, 1, 1 |
767%
768% The first 4 are for edge detection, the next 4 are for line detection
769% and the last is to add a average component to the results.
770%
771% Using a special type of '-1' will return all 9 pre-weighted kernels
772% as a multi-kernel list, so that you can use them directly (without
773% normalization) with the special "-set option:morphology:compose Plus"
774% setting to apply the full FreiChen Edge Detection Technique.
775%
776% If 'type' is large it will be taken to be an actual rotation angle for
777% the default FreiChen (type 0) kernel. As such FreiChen:45 will look
778% like a Sobel:45 but with 'sqrt(2)' instead of '2' values.
779%
780% WARNING: The above was layed out as per
781% http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf
782% But rotated 90 degrees so direction is from left rather than the top.
783% I have yet to find any secondary confirmation of the above. The only
784% other source found was actual source code at
785% http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf
786% Neither paper defines the kernels in a way that looks logical or
787% correct when taken as a whole.
788%
789% Boolean Kernels
790%
791% Diamond:[{radius}[,{scale}]]
792% Generate a diamond shaped kernel with given radius to the points.
793% Kernel size will again be radius*2+1 square and defaults to radius 1,
794% generating a 3x3 kernel that is slightly larger than a square.
795%
796% Square:[{radius}[,{scale}]]
797% Generate a square shaped kernel of size radius*2+1, and defaulting
798% to a 3x3 (radius 1).
799%
800% Octagon:[{radius}[,{scale}]]
801% Generate octagonal shaped kernel of given radius and constant scale.
802% Default radius is 3 producing a 7x7 kernel. A radius of 1 will result
803% in "Diamond" kernel.
804%
805% Disk:[{radius}[,{scale}]]
806% Generate a binary disk, thresholded at the radius given, the radius
807% may be a float-point value. Final Kernel size is floor(radius)*2+1
808% square. A radius of 5.3 is the default.
809%
810% NOTE: That a low radii Disk kernels produce the same results as
811% many of the previously defined kernels, but differ greatly at larger
812% radii. Here is a table of equivalences...
813% "Disk:1" => "Diamond", "Octagon:1", or "Cross:1"
814% "Disk:1.5" => "Square"
815% "Disk:2" => "Diamond:2"
816% "Disk:2.5" => "Octagon"
817% "Disk:2.9" => "Square:2"
818% "Disk:3.5" => "Octagon:3"
819% "Disk:4.5" => "Octagon:4"
820% "Disk:5.4" => "Octagon:5"
821% "Disk:6.4" => "Octagon:6"
822% All other Disk shapes are unique to this kernel, but because a "Disk"
823% is more circular when using a larger radius, using a larger radius is
824% preferred over iterating the morphological operation.
825%
826% Rectangle:{geometry}
827% Simply generate a rectangle of 1's with the size given. You can also
828% specify the location of the 'control point', otherwise the closest
829% pixel to the center of the rectangle is selected.
830%
831% Properly centered and odd sized rectangles work the best.
832%
833% Symbol Dilation Kernels
834%
835% These kernel is not a good general morphological kernel, but is used
836% more for highlighting and marking any single pixels in an image using,
837% a "Dilate" method as appropriate.
838%
839% For the same reasons iterating these kernels does not produce the
840% same result as using a larger radius for the symbol.
841%
842% Plus:[{radius}[,{scale}]]
843% Cross:[{radius}[,{scale}]]
844% Generate a kernel in the shape of a 'plus' or a 'cross' with
845% a each arm the length of the given radius (default 2).
846%
847% NOTE: "plus:1" is equivalent to a "Diamond" kernel.
848%
849% Ring:{radius1},{radius2}[,{scale}]
850% A ring of the values given that falls between the two radii.
851% Defaults to a ring of approximately 3 radius in a 7x7 kernel.
852% This is the 'edge' pixels of the default "Disk" kernel,
853% More specifically, "Ring" -> "Ring:2.5,3.5,1.0"
854%
855% Hit and Miss Kernels
856%
857% Peak:radius1,radius2
858% Find any peak larger than the pixels the fall between the two radii.
859% The default ring of pixels is as per "Ring".
860% Edges
861% Find flat orthogonal edges of a binary shape
862% Corners
863% Find 90 degree corners of a binary shape
864% Diagonals:type
865% A special kernel to thin the 'outside' of diagonals
866% LineEnds:type
867% Find end points of lines (for pruning a skeleton)
868% Two types of lines ends (default to both) can be searched for
869% Type 0: All line ends
870% Type 1: single kernel for 4-connected line ends
871% Type 2: single kernel for simple line ends
872% LineJunctions
873% Find three line junctions (within a skeleton)
874% Type 0: all line junctions
875% Type 1: Y Junction kernel
876% Type 2: Diagonal T Junction kernel
877% Type 3: Orthogonal T Junction kernel
878% Type 4: Diagonal X Junction kernel
879% Type 5: Orthogonal + Junction kernel
880% Ridges:type
881% Find single pixel ridges or thin lines
882% Type 1: Fine single pixel thick lines and ridges
883% Type 2: Find two pixel thick lines and ridges
884% ConvexHull
885% Octagonal Thickening Kernel, to generate convex hulls of 45 degrees
886% Skeleton:type
887% Traditional skeleton generating kernels.
888% Type 1: Traditional Skeleton kernel (4 connected skeleton)
889% Type 2: HIPR2 Skeleton kernel (8 connected skeleton)
890% Type 3: Thinning skeleton based on a research paper by
891% Dan S. Bloomberg (Default Type)
892% ThinSE:type
893% A huge variety of Thinning Kernels designed to preserve connectivity.
894% many other kernel sets use these kernels as source definitions.
895% Type numbers are 41-49, 81-89, 481, and 482 which are based on
896% the super and sub notations used in the source research paper.
897%
898% Distance Measuring Kernels
899%
900% Different types of distance measuring methods, which are used with the
901% a 'Distance' morphology method for generating a gradient based on
902% distance from an edge of a binary shape, though there is a technique
903% for handling a anti-aliased shape.
904%
905% See the 'Distance' Morphological Method, for information of how it is
906% applied.
907%
908% Chebyshev:[{radius}][x{scale}[%!]]
909% Chebyshev Distance (also known as Tchebychev or Chessboard distance)
910% is a value of one to any neighbour, orthogonal or diagonal. One why
911% of thinking of it is the number of squares a 'King' or 'Queen' in
912% chess needs to traverse reach any other position on a chess board.
913% It results in a 'square' like distance function, but one where
914% diagonals are given a value that is closer than expected.
915%
916% Manhattan:[{radius}][x{scale}[%!]]
917% Manhattan Distance (also known as Rectilinear, City Block, or the Taxi
918% Cab distance metric), it is the distance needed when you can only
919% travel in horizontal or vertical directions only. It is the
920% distance a 'Rook' in chess would have to travel, and results in a
921% diamond like distances, where diagonals are further than expected.
922%
923% Octagonal:[{radius}][x{scale}[%!]]
924% An interleaving of Manhattan and Chebyshev metrics producing an
925% increasing octagonally shaped distance. Distances matches those of
926% the "Octagon" shaped kernel of the same radius. The minimum radius
927% and default is 2, producing a 5x5 kernel.
928%
929% Euclidean:[{radius}][x{scale}[%!]]
930% Euclidean distance is the 'direct' or 'as the crow flys' distance.
931% However by default the kernel size only has a radius of 1, which
932% limits the distance to 'Knight' like moves, with only orthogonal and
933% diagonal measurements being correct. As such for the default kernel
934% you will get octagonal like distance function.
935%
936% However using a larger radius such as "Euclidean:4" you will get a
937% much smoother distance gradient from the edge of the shape. Especially
938% if the image is pre-processed to include any anti-aliasing pixels.
939% Of course a larger kernel is slower to use, and not always needed.
940%
941% The first three Distance Measuring Kernels will only generate distances
942% of exact multiples of {scale} in binary images. As such you can use a
943% scale of 1 without loosing any information. However you also need some
944% scaling when handling non-binary anti-aliased shapes.
945%
946% The "Euclidean" Distance Kernel however does generate a non-integer
947% fractional results, and as such scaling is vital even for binary shapes.
948%
949*/
950MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type,
951 const GeometryInfo *args)
952{
954 *kernel;
955
956 ssize_t
957 i;
958
959 ssize_t
960 u,
961 v;
962
963 double
964 nan = sqrt(-1.0); /* Special Value : Not A Number */
965
966 /* Generate a new empty kernel if needed */
967 kernel=(KernelInfo *) NULL;
968 switch(type) {
969 case UndefinedKernel: /* These should not call this function */
970 case UserDefinedKernel:
971 assert("Should not call this function" != (char *) NULL);
972 break;
973 case LaplacianKernel: /* Named Descrete Convolution Kernels */
974 case SobelKernel: /* these are defined using other kernels */
975 case RobertsKernel:
976 case PrewittKernel:
977 case CompassKernel:
978 case KirschKernel:
979 case FreiChenKernel:
980 case EdgesKernel: /* Hit and Miss kernels */
981 case CornersKernel:
982 case DiagonalsKernel:
983 case LineEndsKernel:
984 case LineJunctionsKernel:
985 case RidgesKernel:
986 case ConvexHullKernel:
987 case SkeletonKernel:
988 case ThinSEKernel:
989 break; /* A pre-generated kernel is not needed */
990#if 0
991 /* set to 1 to do a compile-time check that we haven't missed anything */
992 case UnityKernel:
993 case GaussianKernel:
994 case DoGKernel:
995 case LoGKernel:
996 case BlurKernel:
997 case CometKernel:
998 case BinomialKernel:
999 case DiamondKernel:
1000 case SquareKernel:
1001 case RectangleKernel:
1002 case OctagonKernel:
1003 case DiskKernel:
1004 case PlusKernel:
1005 case CrossKernel:
1006 case RingKernel:
1007 case PeaksKernel:
1008 case ChebyshevKernel:
1009 case ManhattanKernel:
1010 case OctagonalKernel:
1011 case EuclideanKernel:
1012#else
1013 default:
1014#endif
1015 /* Generate the base Kernel Structure */
1016 kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
1017 if (kernel == (KernelInfo *) NULL)
1018 return(kernel);
1019 (void) memset(kernel,0,sizeof(*kernel));
1020 kernel->minimum = kernel->maximum = kernel->angle = 0.0;
1021 kernel->negative_range = kernel->positive_range = 0.0;
1022 kernel->type = type;
1023 kernel->next = (KernelInfo *) NULL;
1024 kernel->signature = MagickCoreSignature;
1025 break;
1026 }
1027
1028 switch(type) {
1029 /*
1030 Convolution Kernels
1031 */
1032 case UnityKernel:
1033 {
1034 kernel->height = kernel->width = (size_t) 1;
1035 kernel->x = kernel->y = (ssize_t) 0;
1036 kernel->values=(double *) MagickAssumeAligned(AcquireAlignedMemory(1,
1037 sizeof(*kernel->values)));
1038 if (kernel->values == (double *) NULL)
1039 return(DestroyKernelInfo(kernel));
1040 kernel->maximum = kernel->values[0] = args->rho;
1041 break;
1042 }
1043 break;
1044 case GaussianKernel:
1045 case DoGKernel:
1046 case LoGKernel:
1047 { double
1048 sigma = fabs(args->sigma),
1049 sigma2 = fabs(args->xi),
1050 A, B, R;
1051
1052 if ( args->rho >= 1.0 )
1053 kernel->width = (size_t)args->rho*2+1;
1054 else if ( (type != DoGKernel) || (sigma >= sigma2) )
1055 kernel->width = GetOptimalKernelWidth2D(args->rho,sigma);
1056 else
1057 kernel->width = GetOptimalKernelWidth2D(args->rho,sigma2);
1058 kernel->height = kernel->width;
1059 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
1060 kernel->values=(double *) MagickAssumeAligned(AcquireAlignedMemory(
1061 kernel->width,kernel->height*sizeof(*kernel->values)));
1062 if (kernel->values == (double *) NULL)
1063 return(DestroyKernelInfo(kernel));
1064
1065 /* WARNING: The following generates a 'sampled gaussian' kernel.
1066 * What we really want is a 'discrete gaussian' kernel.
1067 *
1068 * How to do this is I don't know, but appears to be basied on the
1069 * Error Function 'erf()' (integral of a gaussian)
1070 */
1071
1072 if ( type == GaussianKernel || type == DoGKernel )
1073 { /* Calculate a Gaussian, OR positive half of a DoG */
1074 if ( sigma > MagickEpsilon )
1075 { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */
1076 B = (double) (1.0/(Magick2PI*sigma*sigma));
1077 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
1078 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
1079 kernel->values[i] = exp(-((double)(u*u+v*v))*A)*B;
1080 }
1081 else /* limiting case - a unity (normalized Dirac) kernel */
1082 { (void) memset(kernel->values,0, (size_t)
1083 kernel->width*kernel->height*sizeof(*kernel->values));
1084 kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
1085 }
1086 }
1087
1088 if ( type == DoGKernel )
1089 { /* Subtract a Negative Gaussian for "Difference of Gaussian" */
1090 if ( sigma2 > MagickEpsilon )
1091 { sigma = sigma2; /* simplify loop expressions */
1092 A = 1.0/(2.0*sigma*sigma);
1093 B = (double) (1.0/(Magick2PI*sigma*sigma));
1094 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
1095 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
1096 kernel->values[i] -= exp(-((double)(u*u+v*v))*A)*B;
1097 }
1098 else /* limiting case - a unity (normalized Dirac) kernel */
1099 kernel->values[kernel->x+kernel->y*kernel->width] -= 1.0;
1100 }
1101
1102 if ( type == LoGKernel )
1103 { /* Calculate a Laplacian of a Gaussian - Or Mexican Hat */
1104 if ( sigma > MagickEpsilon )
1105 { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */
1106 B = (double) (1.0/(MagickPI*sigma*sigma*sigma*sigma));
1107 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
1108 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
1109 { R = ((double)(u*u+v*v))*A;
1110 kernel->values[i] = (1-R)*exp(-R)*B;
1111 }
1112 }
1113 else /* special case - generate a unity kernel */
1114 { (void) memset(kernel->values,0, (size_t)
1115 kernel->width*kernel->height*sizeof(*kernel->values));
1116 kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
1117 }
1118 }
1119
1120 /* Note the above kernels may have been 'clipped' by a user defined
1121 ** radius, producing a smaller (darker) kernel. Also for very small
1122 ** sigma's (> 0.1) the central value becomes larger than one, and thus
1123 ** producing a very bright kernel.
1124 **
1125 ** Normalization will still be needed.
1126 */
1127
1128 /* Normalize the 2D Gaussian Kernel
1129 **
1130 ** NB: a CorrelateNormalize performs a normal Normalize if
1131 ** there are no negative values.
1132 */
1133 CalcKernelMetaData(kernel); /* the other kernel meta-data */
1134 ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue);
1135
1136 break;
1137 }
1138 case BlurKernel:
1139 { double
1140 sigma = fabs(args->sigma),
1141 alpha, beta;
1142
1143 if ( args->rho >= 1.0 )
1144 kernel->width = (size_t)args->rho*2+1;
1145 else
1146 kernel->width = GetOptimalKernelWidth1D(args->rho,sigma);
1147 kernel->height = 1;
1148 kernel->x = (ssize_t) (kernel->width-1)/2;
1149 kernel->y = 0;
1150 kernel->negative_range = kernel->positive_range = 0.0;
1151 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
1152 kernel->height*sizeof(*kernel->values));
1153 if (kernel->values == (double *) NULL)
1154 return(DestroyKernelInfo(kernel));
1155
1156#if 1
1157#define KernelRank 3
1158 /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix).
1159 ** It generates a gaussian 3 times the width, and compresses it into
1160 ** the expected range. This produces a closer normalization of the
1161 ** resulting kernel, especially for very low sigma values.
1162 ** As such while wierd it is prefered.
1163 **
1164 ** I am told this method originally came from Photoshop.
1165 **
1166 ** A properly normalized curve is generated (apart from edge clipping)
1167 ** even though we later normalize the result (for edge clipping)
1168 ** to allow the correct generation of a "Difference of Blurs".
1169 */
1170
1171 /* initialize */
1172 v = (ssize_t) (kernel->width*KernelRank-1)/2; /* start/end points to fit range */
1173 (void) memset(kernel->values,0, (size_t)
1174 kernel->width*kernel->height*sizeof(*kernel->values));
1175 /* Calculate a Positive 1D Gaussian */
1176 if ( sigma > MagickEpsilon )
1177 { sigma *= KernelRank; /* simplify loop expressions */
1178 alpha = 1.0/(2.0*sigma*sigma);
1179 beta= (double) (1.0/(MagickSQ2PI*sigma ));
1180 for ( u=-v; u <= v; u++) {
1181 kernel->values[(u+v)/KernelRank] +=
1182 exp(-((double)(u*u))*alpha)*beta;
1183 }
1184 }
1185 else /* special case - generate a unity kernel */
1186 kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
1187#else
1188 /* Direct calculation without curve averaging
1189 This is equivalent to a KernelRank of 1 */
1190
1191 /* Calculate a Positive Gaussian */
1192 if ( sigma > MagickEpsilon )
1193 { alpha = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */
1194 beta = 1.0/(MagickSQ2PI*sigma);
1195 for ( i=0, u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
1196 kernel->values[i] = exp(-((double)(u*u))*alpha)*beta;
1197 }
1198 else /* special case - generate a unity kernel */
1199 { (void) memset(kernel->values,0, (size_t)
1200 kernel->width*kernel->height*sizeof(*kernel->values));
1201 kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
1202 }
1203#endif
1204 /* Note the above kernel may have been 'clipped' by a user defined
1205 ** radius, producing a smaller (darker) kernel. Also for very small
1206 ** sigma's (< 0.1) the central value becomes larger than one, as a
1207 ** result of not generating a actual 'discrete' kernel, and thus
1208 ** producing a very bright 'impulse'.
1209 **
1210 ** Because of these two factors Normalization is required!
1211 */
1212
1213 /* Normalize the 1D Gaussian Kernel
1214 **
1215 ** NB: a CorrelateNormalize performs a normal Normalize if
1216 ** there are no negative values.
1217 */
1218 CalcKernelMetaData(kernel); /* the other kernel meta-data */
1219 ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue);
1220
1221 /* rotate the 1D kernel by given angle */
1222 RotateKernelInfo(kernel, args->xi );
1223 break;
1224 }
1225 case CometKernel:
1226 { double
1227 sigma = fabs(args->sigma),
1228 A;
1229
1230 if ( args->rho < 1.0 )
1231 kernel->width = (GetOptimalKernelWidth1D(args->rho,sigma)-1)/2+1;
1232 else
1233 kernel->width = (size_t)args->rho;
1234 kernel->x = kernel->y = 0;
1235 kernel->height = 1;
1236 kernel->negative_range = kernel->positive_range = 0.0;
1237 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
1238 kernel->height*sizeof(*kernel->values));
1239 if (kernel->values == (double *) NULL)
1240 return(DestroyKernelInfo(kernel));
1241
1242 /* A comet blur is half a 1D gaussian curve, so that the object is
1243 ** blurred in one direction only. This may not be quite the right
1244 ** curve to use so may change in the future. The function must be
1245 ** normalised after generation, which also resolves any clipping.
1246 **
1247 ** As we are normalizing and not subtracting gaussians,
1248 ** there is no need for a divisor in the gaussian formula
1249 **
1250 ** It is less complex
1251 */
1252 if ( sigma > MagickEpsilon )
1253 {
1254#if 1
1255#define KernelRank 3
1256 v = (ssize_t) kernel->width*KernelRank; /* start/end points */
1257 (void) memset(kernel->values,0, (size_t)
1258 kernel->width*sizeof(*kernel->values));
1259 sigma *= KernelRank; /* simplify the loop expression */
1260 A = 1.0/(2.0*sigma*sigma);
1261 /* B = 1.0/(MagickSQ2PI*sigma); */
1262 for ( u=0; u < v; u++) {
1263 kernel->values[u/KernelRank] +=
1264 exp(-((double)(u*u))*A);
1265 /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */
1266 }
1267 for (i=0; i < (ssize_t) kernel->width; i++)
1268 kernel->positive_range += kernel->values[i];
1269#else
1270 A = 1.0/(2.0*sigma*sigma); /* simplify the loop expression */
1271 /* B = 1.0/(MagickSQ2PI*sigma); */
1272 for ( i=0; i < (ssize_t) kernel->width; i++)
1273 kernel->positive_range +=
1274 kernel->values[i] = exp(-((double)(i*i))*A);
1275 /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */
1276#endif
1277 }
1278 else /* special case - generate a unity kernel */
1279 { (void) memset(kernel->values,0, (size_t)
1280 kernel->width*kernel->height*sizeof(*kernel->values));
1281 kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
1282 kernel->positive_range = 1.0;
1283 }
1284
1285 kernel->minimum = 0.0;
1286 kernel->maximum = kernel->values[0];
1287 kernel->negative_range = 0.0;
1288
1289 ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */
1290 RotateKernelInfo(kernel, args->xi); /* Rotate by angle */
1291 break;
1292 }
1293 case BinomialKernel:
1294 {
1295 size_t
1296 order_f;
1297
1298 if (args->rho < 1.0)
1299 kernel->width = kernel->height = 3; /* default radius = 1 */
1300 else
1301 kernel->width = kernel->height = ((size_t)args->rho)*2+1;
1302 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
1303
1304 order_f = fact(kernel->width-1);
1305
1306 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
1307 kernel->height*sizeof(*kernel->values));
1308 if (kernel->values == (double *) NULL)
1309 return(DestroyKernelInfo(kernel));
1310
1311 /* set all kernel values within diamond area to scale given */
1312 for ( i=0, v=0; v < (ssize_t)kernel->height; v++)
1313 { size_t
1314 alpha = order_f / ( fact((size_t) v) * fact(kernel->height-v-1) );
1315 for ( u=0; u < (ssize_t)kernel->width; u++, i++)
1316 kernel->positive_range += kernel->values[i] = (double)
1317 (alpha * order_f / ( fact((size_t) u) * fact(kernel->height-u-1) ));
1318 }
1319 kernel->minimum = 1.0;
1320 kernel->maximum = kernel->values[kernel->x+kernel->y*kernel->width];
1321 kernel->negative_range = 0.0;
1322 break;
1323 }
1324
1325 /*
1326 Convolution Kernels - Well Known Named Constant Kernels
1327 */
1328 case LaplacianKernel:
1329 { switch ( (int) args->rho ) {
1330 case 0:
1331 default: /* laplacian square filter -- default */
1332 kernel=ParseKernelArray("3: -1,-1,-1 -1,8,-1 -1,-1,-1");
1333 break;
1334 case 1: /* laplacian diamond filter */
1335 kernel=ParseKernelArray("3: 0,-1,0 -1,4,-1 0,-1,0");
1336 break;
1337 case 2:
1338 kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2");
1339 break;
1340 case 3:
1341 kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 1,-2,1");
1342 break;
1343 case 5: /* a 5x5 laplacian */
1344 kernel=ParseKernelArray(
1345 "5: -4,-1,0,-1,-4 -1,2,3,2,-1 0,3,4,3,0 -1,2,3,2,-1 -4,-1,0,-1,-4");
1346 break;
1347 case 7: /* a 7x7 laplacian */
1348 kernel=ParseKernelArray(
1349 "7:-10,-5,-2,-1,-2,-5,-10 -5,0,3,4,3,0,-5 -2,3,6,7,6,3,-2 -1,4,7,8,7,4,-1 -2,3,6,7,6,3,-2 -5,0,3,4,3,0,-5 -10,-5,-2,-1,-2,-5,-10" );
1350 break;
1351 case 15: /* a 5x5 LoG (sigma approx 1.4) */
1352 kernel=ParseKernelArray(
1353 "5: 0,0,-1,0,0 0,-1,-2,-1,0 -1,-2,16,-2,-1 0,-1,-2,-1,0 0,0,-1,0,0");
1354 break;
1355 case 19: /* a 9x9 LoG (sigma approx 1.4) */
1356 /* http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue1/IJIP-15.pdf */
1357 kernel=ParseKernelArray(
1358 "9: 0,-1,-1,-2,-2,-2,-1,-1,0 -1,-2,-4,-5,-5,-5,-4,-2,-1 -1,-4,-5,-3,-0,-3,-5,-4,-1 -2,-5,-3,12,24,12,-3,-5,-2 -2,-5,-0,24,40,24,-0,-5,-2 -2,-5,-3,12,24,12,-3,-5,-2 -1,-4,-5,-3,-0,-3,-5,-4,-1 -1,-2,-4,-5,-5,-5,-4,-2,-1 0,-1,-1,-2,-2,-2,-1,-1,0");
1359 break;
1360 }
1361 if (kernel == (KernelInfo *) NULL)
1362 return(kernel);
1363 kernel->type = type;
1364 break;
1365 }
1366 case SobelKernel:
1367 { /* Simple Sobel Kernel */
1368 kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1");
1369 if (kernel == (KernelInfo *) NULL)
1370 return(kernel);
1371 kernel->type = type;
1372 RotateKernelInfo(kernel, args->rho);
1373 break;
1374 }
1375 case RobertsKernel:
1376 {
1377 kernel=ParseKernelArray("3: 0,0,0 1,-1,0 0,0,0");
1378 if (kernel == (KernelInfo *) NULL)
1379 return(kernel);
1380 kernel->type = type;
1381 RotateKernelInfo(kernel, args->rho);
1382 break;
1383 }
1384 case PrewittKernel:
1385 {
1386 kernel=ParseKernelArray("3: 1,0,-1 1,0,-1 1,0,-1");
1387 if (kernel == (KernelInfo *) NULL)
1388 return(kernel);
1389 kernel->type = type;
1390 RotateKernelInfo(kernel, args->rho);
1391 break;
1392 }
1393 case CompassKernel:
1394 {
1395 kernel=ParseKernelArray("3: 1,1,-1 1,-2,-1 1,1,-1");
1396 if (kernel == (KernelInfo *) NULL)
1397 return(kernel);
1398 kernel->type = type;
1399 RotateKernelInfo(kernel, args->rho);
1400 break;
1401 }
1402 case KirschKernel:
1403 {
1404 kernel=ParseKernelArray("3: 5,-3,-3 5,0,-3 5,-3,-3");
1405 if (kernel == (KernelInfo *) NULL)
1406 return(kernel);
1407 kernel->type = type;
1408 RotateKernelInfo(kernel, args->rho);
1409 break;
1410 }
1411 case FreiChenKernel:
1412 /* Direction is set to be left to right positive */
1413 /* http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf -- RIGHT? */
1414 /* http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf -- WRONG? */
1415 { switch ( (int) args->rho ) {
1416 default:
1417 case 0:
1418 kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1");
1419 if (kernel == (KernelInfo *) NULL)
1420 return(kernel);
1421 kernel->type = type;
1422 kernel->values[3] = +MagickSQ2;
1423 kernel->values[5] = -MagickSQ2;
1424 CalcKernelMetaData(kernel); /* recalculate meta-data */
1425 break;
1426 case 2:
1427 kernel=ParseKernelArray("3: 1,2,0 2,0,-2 0,-2,-1");
1428 if (kernel == (KernelInfo *) NULL)
1429 return(kernel);
1430 kernel->type = type;
1431 kernel->values[1] = kernel->values[3]= +MagickSQ2;
1432 kernel->values[5] = kernel->values[7]= -MagickSQ2;
1433 CalcKernelMetaData(kernel); /* recalculate meta-data */
1434 ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue);
1435 break;
1436 case 10:
1437 kernel=AcquireKernelInfo("FreiChen:11;FreiChen:12;FreiChen:13;FreiChen:14;FreiChen:15;FreiChen:16;FreiChen:17;FreiChen:18;FreiChen:19");
1438 if (kernel == (KernelInfo *) NULL)
1439 return(kernel);
1440 break;
1441 case 1:
1442 case 11:
1443 kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1");
1444 if (kernel == (KernelInfo *) NULL)
1445 return(kernel);
1446 kernel->type = type;
1447 kernel->values[3] = +MagickSQ2;
1448 kernel->values[5] = -MagickSQ2;
1449 CalcKernelMetaData(kernel); /* recalculate meta-data */
1450 ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue);
1451 break;
1452 case 12:
1453 kernel=ParseKernelArray("3: 1,2,1 0,0,0 1,2,1");
1454 if (kernel == (KernelInfo *) NULL)
1455 return(kernel);
1456 kernel->type = type;
1457 kernel->values[1] = +MagickSQ2;
1458 kernel->values[7] = +MagickSQ2;
1459 CalcKernelMetaData(kernel);
1460 ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue);
1461 break;
1462 case 13:
1463 kernel=ParseKernelArray("3: 2,-1,0 -1,0,1 0,1,-2");
1464 if (kernel == (KernelInfo *) NULL)
1465 return(kernel);
1466 kernel->type = type;
1467 kernel->values[0] = +MagickSQ2;
1468 kernel->values[8] = -MagickSQ2;
1469 CalcKernelMetaData(kernel);
1470 ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue);
1471 break;
1472 case 14:
1473 kernel=ParseKernelArray("3: 0,1,-2 -1,0,1 2,-1,0");
1474 if (kernel == (KernelInfo *) NULL)
1475 return(kernel);
1476 kernel->type = type;
1477 kernel->values[2] = -MagickSQ2;
1478 kernel->values[6] = +MagickSQ2;
1479 CalcKernelMetaData(kernel);
1480 ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue);
1481 break;
1482 case 15:
1483 kernel=ParseKernelArray("3: 0,-1,0 1,0,1 0,-1,0");
1484 if (kernel == (KernelInfo *) NULL)
1485 return(kernel);
1486 kernel->type = type;
1487 ScaleKernelInfo(kernel, 1.0/2.0, NoValue);
1488 break;
1489 case 16:
1490 kernel=ParseKernelArray("3: 1,0,-1 0,0,0 -1,0,1");
1491 if (kernel == (KernelInfo *) NULL)
1492 return(kernel);
1493 kernel->type = type;
1494 ScaleKernelInfo(kernel, 1.0/2.0, NoValue);
1495 break;
1496 case 17:
1497 kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 -1,-2,1");
1498 if (kernel == (KernelInfo *) NULL)
1499 return(kernel);
1500 kernel->type = type;
1501 ScaleKernelInfo(kernel, 1.0/6.0, NoValue);
1502 break;
1503 case 18:
1504 kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2");
1505 if (kernel == (KernelInfo *) NULL)
1506 return(kernel);
1507 kernel->type = type;
1508 ScaleKernelInfo(kernel, 1.0/6.0, NoValue);
1509 break;
1510 case 19:
1511 kernel=ParseKernelArray("3: 1,1,1 1,1,1 1,1,1");
1512 if (kernel == (KernelInfo *) NULL)
1513 return(kernel);
1514 kernel->type = type;
1515 ScaleKernelInfo(kernel, 1.0/3.0, NoValue);
1516 break;
1517 }
1518 if ( fabs(args->sigma) >= MagickEpsilon )
1519 /* Rotate by correctly supplied 'angle' */
1520 RotateKernelInfo(kernel, args->sigma);
1521 else if ( args->rho > 30.0 || args->rho < -30.0 )
1522 /* Rotate by out of bounds 'type' */
1523 RotateKernelInfo(kernel, args->rho);
1524 break;
1525 }
1526
1527 /*
1528 Boolean or Shaped Kernels
1529 */
1530 case DiamondKernel:
1531 {
1532 if (args->rho < 1.0)
1533 kernel->width = kernel->height = 3; /* default radius = 1 */
1534 else
1535 kernel->width = kernel->height = ((size_t)args->rho)*2+1;
1536 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
1537
1538 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
1539 kernel->height*sizeof(*kernel->values));
1540 if (kernel->values == (double *) NULL)
1541 return(DestroyKernelInfo(kernel));
1542
1543 /* set all kernel values within diamond area to scale given */
1544 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
1545 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
1546 if ( (labs((long) u)+labs((long) v)) <= (long) kernel->x)
1547 kernel->positive_range += kernel->values[i] = args->sigma;
1548 else
1549 kernel->values[i] = nan;
1550 kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */
1551 break;
1552 }
1553 case SquareKernel:
1554 case RectangleKernel:
1555 { double
1556 scale;
1557 if ( type == SquareKernel )
1558 {
1559 if (args->rho < 1.0)
1560 kernel->width = kernel->height = 3; /* default radius = 1 */
1561 else
1562 kernel->width = kernel->height = (size_t) (2*args->rho+1);
1563 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
1564 scale = args->sigma;
1565 }
1566 else {
1567 /* NOTE: user defaults set in "AcquireKernelInfo()" */
1568 if ( args->rho < 1.0 || args->sigma < 1.0 )
1569 return(DestroyKernelInfo(kernel)); /* invalid args given */
1570 kernel->width = (size_t)args->rho;
1571 kernel->height = (size_t)args->sigma;
1572 if ( args->xi < 0.0 || args->xi > (double)kernel->width ||
1573 args->psi < 0.0 || args->psi > (double)kernel->height )
1574 return(DestroyKernelInfo(kernel)); /* invalid args given */
1575 kernel->x = (ssize_t) args->xi;
1576 kernel->y = (ssize_t) args->psi;
1577 scale = 1.0;
1578 }
1579 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
1580 kernel->height*sizeof(*kernel->values));
1581 if (kernel->values == (double *) NULL)
1582 return(DestroyKernelInfo(kernel));
1583
1584 /* set all kernel values to scale given */
1585 u=(ssize_t) (kernel->width*kernel->height);
1586 for ( i=0; i < u; i++)
1587 kernel->values[i] = scale;
1588 kernel->minimum = kernel->maximum = scale; /* a flat shape */
1589 kernel->positive_range = scale*u;
1590 break;
1591 }
1592 case OctagonKernel:
1593 {
1594 if (args->rho < 1.0)
1595 kernel->width = kernel->height = 5; /* default radius = 2 */
1596 else
1597 kernel->width = kernel->height = ((size_t)args->rho)*2+1;
1598 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
1599
1600 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
1601 kernel->height*sizeof(*kernel->values));
1602 if (kernel->values == (double *) NULL)
1603 return(DestroyKernelInfo(kernel));
1604
1605 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
1606 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
1607 if ( (labs((long) u)+labs((long) v)) <=
1608 ((long)kernel->x + (long)(kernel->x/2)) )
1609 kernel->positive_range += kernel->values[i] = args->sigma;
1610 else
1611 kernel->values[i] = nan;
1612 kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */
1613 break;
1614 }
1615 case DiskKernel:
1616 {
1617 ssize_t
1618 limit = (ssize_t)(args->rho*args->rho);
1619
1620 if (args->rho < 0.4) /* default radius approx 4.3 */
1621 kernel->width = kernel->height = 9L, limit = 18L;
1622 else
1623 kernel->width = kernel->height = (size_t)fabs(args->rho)*2+1;
1624 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
1625
1626 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
1627 kernel->height*sizeof(*kernel->values));
1628 if (kernel->values == (double *) NULL)
1629 return(DestroyKernelInfo(kernel));
1630
1631 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
1632 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
1633 if ((u*u+v*v) <= limit)
1634 kernel->positive_range += kernel->values[i] = args->sigma;
1635 else
1636 kernel->values[i] = nan;
1637 kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */
1638 break;
1639 }
1640 case PlusKernel:
1641 {
1642 if (args->rho < 1.0)
1643 kernel->width = kernel->height = 5; /* default radius 2 */
1644 else
1645 kernel->width = kernel->height = ((size_t)args->rho)*2+1;
1646 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
1647
1648 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
1649 kernel->height*sizeof(*kernel->values));
1650 if (kernel->values == (double *) NULL)
1651 return(DestroyKernelInfo(kernel));
1652
1653 /* set all kernel values along axises to given scale */
1654 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
1655 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
1656 kernel->values[i] = (u == 0 || v == 0) ? args->sigma : nan;
1657 kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */
1658 kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0);
1659 break;
1660 }
1661 case CrossKernel:
1662 {
1663 if (args->rho < 1.0)
1664 kernel->width = kernel->height = 5; /* default radius 2 */
1665 else
1666 kernel->width = kernel->height = ((size_t)args->rho)*2+1;
1667 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
1668
1669 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
1670 kernel->height*sizeof(*kernel->values));
1671 if (kernel->values == (double *) NULL)
1672 return(DestroyKernelInfo(kernel));
1673
1674 /* set all kernel values along axises to given scale */
1675 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
1676 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
1677 kernel->values[i] = (u == v || u == -v) ? args->sigma : nan;
1678 kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */
1679 kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0);
1680 break;
1681 }
1682 /*
1683 HitAndMiss Kernels
1684 */
1685 case RingKernel:
1686 case PeaksKernel:
1687 {
1688 ssize_t
1689 limit1,
1690 limit2,
1691 scale;
1692
1693 if (args->rho < args->sigma)
1694 {
1695 kernel->width = ((size_t)args->sigma)*2+1;
1696 limit1 = (ssize_t)(args->rho*args->rho);
1697 limit2 = (ssize_t)(args->sigma*args->sigma);
1698 }
1699 else
1700 {
1701 kernel->width = ((size_t)args->rho)*2+1;
1702 limit1 = (ssize_t)(args->sigma*args->sigma);
1703 limit2 = (ssize_t)(args->rho*args->rho);
1704 }
1705 if ( limit2 <= 0 )
1706 kernel->width = 7L, limit1 = 7L, limit2 = 11L;
1707
1708 kernel->height = kernel->width;
1709 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
1710 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
1711 kernel->height*sizeof(*kernel->values));
1712 if (kernel->values == (double *) NULL)
1713 return(DestroyKernelInfo(kernel));
1714
1715 /* set a ring of points of 'scale' ( 0.0 for PeaksKernel ) */
1716 scale = (ssize_t) (( type == PeaksKernel) ? 0.0 : args->xi);
1717 for ( i=0, v= -kernel->y; v <= (ssize_t)kernel->y; v++)
1718 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
1719 { ssize_t radius=u*u+v*v;
1720 if (limit1 < radius && radius <= limit2)
1721 kernel->positive_range += kernel->values[i] = (double) scale;
1722 else
1723 kernel->values[i] = nan;
1724 }
1725 kernel->minimum = kernel->maximum = (double) scale;
1726 if ( type == PeaksKernel ) {
1727 /* set the central point in the middle */
1728 kernel->values[kernel->x+kernel->y*kernel->width] = 1.0;
1729 kernel->positive_range = 1.0;
1730 kernel->maximum = 1.0;
1731 }
1732 break;
1733 }
1734 case EdgesKernel:
1735 {
1736 kernel=AcquireKernelInfo("ThinSE:482");
1737 if (kernel == (KernelInfo *) NULL)
1738 return(kernel);
1739 kernel->type = type;
1740 ExpandMirrorKernelInfo(kernel); /* mirror expansion of kernels */
1741 break;
1742 }
1743 case CornersKernel:
1744 {
1745 kernel=AcquireKernelInfo("ThinSE:87");
1746 if (kernel == (KernelInfo *) NULL)
1747 return(kernel);
1748 kernel->type = type;
1749 ExpandRotateKernelInfo(kernel, 90.0); /* Expand 90 degree rotations */
1750 break;
1751 }
1752 case DiagonalsKernel:
1753 {
1754 switch ( (int) args->rho ) {
1755 case 0:
1756 default:
1757 { KernelInfo
1758 *new_kernel;
1759 kernel=ParseKernelArray("3: 0,0,0 0,-,1 1,1,-");
1760 if (kernel == (KernelInfo *) NULL)
1761 return(kernel);
1762 kernel->type = type;
1763 new_kernel=ParseKernelArray("3: 0,0,1 0,-,1 0,1,-");
1764 if (new_kernel == (KernelInfo *) NULL)
1765 return(DestroyKernelInfo(kernel));
1766 new_kernel->type = type;
1767 LastKernelInfo(kernel)->next = new_kernel;
1768 ExpandMirrorKernelInfo(kernel);
1769 return(kernel);
1770 }
1771 case 1:
1772 kernel=ParseKernelArray("3: 0,0,0 0,-,1 1,1,-");
1773 break;
1774 case 2:
1775 kernel=ParseKernelArray("3: 0,0,1 0,-,1 0,1,-");
1776 break;
1777 }
1778 if (kernel == (KernelInfo *) NULL)
1779 return(kernel);
1780 kernel->type = type;
1781 RotateKernelInfo(kernel, args->sigma);
1782 break;
1783 }
1784 case LineEndsKernel:
1785 { /* Kernels for finding the end of thin lines */
1786 switch ( (int) args->rho ) {
1787 case 0:
1788 default:
1789 /* set of kernels to find all end of lines */
1790 return(AcquireKernelInfo("LineEnds:1>;LineEnds:2>"));
1791 case 1:
1792 /* kernel for 4-connected line ends - no rotation */
1793 kernel=ParseKernelArray("3: 0,0,- 0,1,1 0,0,-");
1794 break;
1795 case 2:
1796 /* kernel to add for 8-connected lines - no rotation */
1797 kernel=ParseKernelArray("3: 0,0,0 0,1,0 0,0,1");
1798 break;
1799 case 3:
1800 /* kernel to add for orthogonal line ends - does not find corners */
1801 kernel=ParseKernelArray("3: 0,0,0 0,1,1 0,0,0");
1802 break;
1803 case 4:
1804 /* traditional line end - fails on last T end */
1805 kernel=ParseKernelArray("3: 0,0,0 0,1,- 0,0,-");
1806 break;
1807 }
1808 if (kernel == (KernelInfo *) NULL)
1809 return(kernel);
1810 kernel->type = type;
1811 RotateKernelInfo(kernel, args->sigma);
1812 break;
1813 }
1814 case LineJunctionsKernel:
1815 { /* kernels for finding the junctions of multiple lines */
1816 switch ( (int) args->rho ) {
1817 case 0:
1818 default:
1819 /* set of kernels to find all line junctions */
1820 return(AcquireKernelInfo("LineJunctions:1@;LineJunctions:2>"));
1821 case 1:
1822 /* Y Junction */
1823 kernel=ParseKernelArray("3: 1,-,1 -,1,- -,1,-");
1824 break;
1825 case 2:
1826 /* Diagonal T Junctions */
1827 kernel=ParseKernelArray("3: 1,-,- -,1,- 1,-,1");
1828 break;
1829 case 3:
1830 /* Orthogonal T Junctions */
1831 kernel=ParseKernelArray("3: -,-,- 1,1,1 -,1,-");
1832 break;
1833 case 4:
1834 /* Diagonal X Junctions */
1835 kernel=ParseKernelArray("3: 1,-,1 -,1,- 1,-,1");
1836 break;
1837 case 5:
1838 /* Orthogonal X Junctions - minimal diamond kernel */
1839 kernel=ParseKernelArray("3: -,1,- 1,1,1 -,1,-");
1840 break;
1841 }
1842 if (kernel == (KernelInfo *) NULL)
1843 return(kernel);
1844 kernel->type = type;
1845 RotateKernelInfo(kernel, args->sigma);
1846 break;
1847 }
1848 case RidgesKernel:
1849 { /* Ridges - Ridge finding kernels */
1851 *new_kernel;
1852 switch ( (int) args->rho ) {
1853 case 1:
1854 default:
1855 kernel=ParseKernelArray("3x1:0,1,0");
1856 if (kernel == (KernelInfo *) NULL)
1857 return(kernel);
1858 kernel->type = type;
1859 ExpandRotateKernelInfo(kernel, 90.0); /* 2 rotated kernels (symmetrical) */
1860 break;
1861 case 2:
1862 kernel=ParseKernelArray("4x1:0,1,1,0");
1863 if (kernel == (KernelInfo *) NULL)
1864 return(kernel);
1865 kernel->type = type;
1866 ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotated kernels */
1867
1868 /* Kernels to find a stepped 'thick' line, 4 rotates + mirrors */
1869 /* Unfortunately we can not yet rotate a non-square kernel */
1870 /* But then we can't flip a non-symmetrical kernel either */
1871 new_kernel=ParseKernelArray("4x3+1+1:0,1,1,- -,1,1,- -,1,1,0");
1872 if (new_kernel == (KernelInfo *) NULL)
1873 return(DestroyKernelInfo(kernel));
1874 new_kernel->type = type;
1875 LastKernelInfo(kernel)->next = new_kernel;
1876 new_kernel=ParseKernelArray("4x3+2+1:0,1,1,- -,1,1,- -,1,1,0");
1877 if (new_kernel == (KernelInfo *) NULL)
1878 return(DestroyKernelInfo(kernel));
1879 new_kernel->type = type;
1880 LastKernelInfo(kernel)->next = new_kernel;
1881 new_kernel=ParseKernelArray("4x3+1+1:-,1,1,0 -,1,1,- 0,1,1,-");
1882 if (new_kernel == (KernelInfo *) NULL)
1883 return(DestroyKernelInfo(kernel));
1884 new_kernel->type = type;
1885 LastKernelInfo(kernel)->next = new_kernel;
1886 new_kernel=ParseKernelArray("4x3+2+1:-,1,1,0 -,1,1,- 0,1,1,-");
1887 if (new_kernel == (KernelInfo *) NULL)
1888 return(DestroyKernelInfo(kernel));
1889 new_kernel->type = type;
1890 LastKernelInfo(kernel)->next = new_kernel;
1891 new_kernel=ParseKernelArray("3x4+1+1:0,-,- 1,1,1 1,1,1 -,-,0");
1892 if (new_kernel == (KernelInfo *) NULL)
1893 return(DestroyKernelInfo(kernel));
1894 new_kernel->type = type;
1895 LastKernelInfo(kernel)->next = new_kernel;
1896 new_kernel=ParseKernelArray("3x4+1+2:0,-,- 1,1,1 1,1,1 -,-,0");
1897 if (new_kernel == (KernelInfo *) NULL)
1898 return(DestroyKernelInfo(kernel));
1899 new_kernel->type = type;
1900 LastKernelInfo(kernel)->next = new_kernel;
1901 new_kernel=ParseKernelArray("3x4+1+1:-,-,0 1,1,1 1,1,1 0,-,-");
1902 if (new_kernel == (KernelInfo *) NULL)
1903 return(DestroyKernelInfo(kernel));
1904 new_kernel->type = type;
1905 LastKernelInfo(kernel)->next = new_kernel;
1906 new_kernel=ParseKernelArray("3x4+1+2:-,-,0 1,1,1 1,1,1 0,-,-");
1907 if (new_kernel == (KernelInfo *) NULL)
1908 return(DestroyKernelInfo(kernel));
1909 new_kernel->type = type;
1910 LastKernelInfo(kernel)->next = new_kernel;
1911 break;
1912 }
1913 break;
1914 }
1915 case ConvexHullKernel:
1916 {
1918 *new_kernel;
1919 /* first set of 8 kernels */
1920 kernel=ParseKernelArray("3: 1,1,- 1,0,- 1,-,0");
1921 if (kernel == (KernelInfo *) NULL)
1922 return(kernel);
1923 kernel->type = type;
1924 ExpandRotateKernelInfo(kernel, 90.0);
1925 /* append the mirror versions too - no flip function yet */
1926 new_kernel=ParseKernelArray("3: 1,1,1 1,0,- -,-,0");
1927 if (new_kernel == (KernelInfo *) NULL)
1928 return(DestroyKernelInfo(kernel));
1929 new_kernel->type = type;
1930 ExpandRotateKernelInfo(new_kernel, 90.0);
1931 LastKernelInfo(kernel)->next = new_kernel;
1932 break;
1933 }
1934 case SkeletonKernel:
1935 {
1936 switch ( (int) args->rho ) {
1937 case 1:
1938 default:
1939 /* Traditional Skeleton...
1940 ** A cyclically rotated single kernel
1941 */
1942 kernel=AcquireKernelInfo("ThinSE:482");
1943 if (kernel == (KernelInfo *) NULL)
1944 return(kernel);
1945 kernel->type = type;
1946 ExpandRotateKernelInfo(kernel, 45.0); /* 8 rotations */
1947 break;
1948 case 2:
1949 /* HIPR Variation of the cyclic skeleton
1950 ** Corners of the traditional method made more forgiving,
1951 ** but the retain the same cyclic order.
1952 */
1953 kernel=AcquireKernelInfo("ThinSE:482; ThinSE:87x90;");
1954 if (kernel == (KernelInfo *) NULL)
1955 return(kernel);
1956 if (kernel->next == (KernelInfo *) NULL)
1957 return(DestroyKernelInfo(kernel));
1958 kernel->type = type;
1959 kernel->next->type = type;
1960 ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotations of the 2 kernels */
1961 break;
1962 case 3:
1963 /* Dan Bloomberg Skeleton, from his paper on 3x3 thinning SE's
1964 ** "Connectivity-Preserving Morphological Image Transformations"
1965 ** by Dan S. Bloomberg, available on Leptonica, Selected Papers,
1966 ** http://www.leptonica.com/papers/conn.pdf
1967 */
1968 kernel=AcquireKernelInfo(
1969 "ThinSE:41; ThinSE:42; ThinSE:43");
1970 if (kernel == (KernelInfo *) NULL)
1971 return(kernel);
1972 if (kernel->next == (KernelInfo *) NULL)
1973 return(DestroyKernelInfo(kernel));
1974 if (kernel->next->next == (KernelInfo *) NULL)
1975 return(DestroyKernelInfo(kernel));
1976 kernel->type = type;
1977 kernel->next->type = type;
1978 kernel->next->next->type = type;
1979 ExpandMirrorKernelInfo(kernel); /* 12 kernels total */
1980 break;
1981 }
1982 break;
1983 }
1984 case ThinSEKernel:
1985 { /* Special kernels for general thinning, while preserving connections
1986 ** "Connectivity-Preserving Morphological Image Transformations"
1987 ** by Dan S. Bloomberg, available on Leptonica, Selected Papers,
1988 ** http://www.leptonica.com/papers/conn.pdf
1989 ** And
1990 ** http://tpgit.github.com/Leptonica/ccthin_8c_source.html
1991 **
1992 ** Note kernels do not specify the origin pixel, allowing them
1993 ** to be used for both thickening and thinning operations.
1994 */
1995 switch ( (int) args->rho ) {
1996 /* SE for 4-connected thinning */
1997 case 41: /* SE_4_1 */
1998 kernel=ParseKernelArray("3: -,-,1 0,-,1 -,-,1");
1999 break;
2000 case 42: /* SE_4_2 */
2001 kernel=ParseKernelArray("3: -,-,1 0,-,1 -,0,-");
2002 break;
2003 case 43: /* SE_4_3 */
2004 kernel=ParseKernelArray("3: -,0,- 0,-,1 -,-,1");
2005 break;
2006 case 44: /* SE_4_4 */
2007 kernel=ParseKernelArray("3: -,0,- 0,-,1 -,0,-");
2008 break;
2009 case 45: /* SE_4_5 */
2010 kernel=ParseKernelArray("3: -,0,1 0,-,1 -,0,-");
2011 break;
2012 case 46: /* SE_4_6 */
2013 kernel=ParseKernelArray("3: -,0,- 0,-,1 -,0,1");
2014 break;
2015 case 47: /* SE_4_7 */
2016 kernel=ParseKernelArray("3: -,1,1 0,-,1 -,0,-");
2017 break;
2018 case 48: /* SE_4_8 */
2019 kernel=ParseKernelArray("3: -,-,1 0,-,1 0,-,1");
2020 break;
2021 case 49: /* SE_4_9 */
2022 kernel=ParseKernelArray("3: 0,-,1 0,-,1 -,-,1");
2023 break;
2024 /* SE for 8-connected thinning - negatives of the above */
2025 case 81: /* SE_8_0 */
2026 kernel=ParseKernelArray("3: -,1,- 0,-,1 -,1,-");
2027 break;
2028 case 82: /* SE_8_2 */
2029 kernel=ParseKernelArray("3: -,1,- 0,-,1 0,-,-");
2030 break;
2031 case 83: /* SE_8_3 */
2032 kernel=ParseKernelArray("3: 0,-,- 0,-,1 -,1,-");
2033 break;
2034 case 84: /* SE_8_4 */
2035 kernel=ParseKernelArray("3: 0,-,- 0,-,1 0,-,-");
2036 break;
2037 case 85: /* SE_8_5 */
2038 kernel=ParseKernelArray("3: 0,-,1 0,-,1 0,-,-");
2039 break;
2040 case 86: /* SE_8_6 */
2041 kernel=ParseKernelArray("3: 0,-,- 0,-,1 0,-,1");
2042 break;
2043 case 87: /* SE_8_7 */
2044 kernel=ParseKernelArray("3: -,1,- 0,-,1 0,0,-");
2045 break;
2046 case 88: /* SE_8_8 */
2047 kernel=ParseKernelArray("3: -,1,- 0,-,1 0,1,-");
2048 break;
2049 case 89: /* SE_8_9 */
2050 kernel=ParseKernelArray("3: 0,1,- 0,-,1 -,1,-");
2051 break;
2052 /* Special combined SE kernels */
2053 case 423: /* SE_4_2 , SE_4_3 Combined Kernel */
2054 kernel=ParseKernelArray("3: -,-,1 0,-,- -,0,-");
2055 break;
2056 case 823: /* SE_8_2 , SE_8_3 Combined Kernel */
2057 kernel=ParseKernelArray("3: -,1,- -,-,1 0,-,-");
2058 break;
2059 case 481: /* SE_48_1 - General Connected Corner Kernel */
2060 kernel=ParseKernelArray("3: -,1,1 0,-,1 0,0,-");
2061 break;
2062 default:
2063 case 482: /* SE_48_2 - General Edge Kernel */
2064 kernel=ParseKernelArray("3: 0,-,1 0,-,1 0,-,1");
2065 break;
2066 }
2067 if (kernel == (KernelInfo *) NULL)
2068 return(kernel);
2069 kernel->type = type;
2070 RotateKernelInfo(kernel, args->sigma);
2071 break;
2072 }
2073 /*
2074 Distance Measuring Kernels
2075 */
2076 case ChebyshevKernel:
2077 {
2078 if (args->rho < 1.0)
2079 kernel->width = kernel->height = 3; /* default radius = 1 */
2080 else
2081 kernel->width = kernel->height = ((size_t)args->rho)*2+1;
2082 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
2083
2084 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
2085 kernel->height*sizeof(*kernel->values));
2086 if (kernel->values == (double *) NULL)
2087 return(DestroyKernelInfo(kernel));
2088
2089 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
2090 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
2091 kernel->positive_range += ( kernel->values[i] =
2092 args->sigma*MagickMax(fabs((double)u),fabs((double)v)) );
2093 kernel->maximum = kernel->values[0];
2094 break;
2095 }
2096 case ManhattanKernel:
2097 {
2098 if (args->rho < 1.0)
2099 kernel->width = kernel->height = 3; /* default radius = 1 */
2100 else
2101 kernel->width = kernel->height = ((size_t)args->rho)*2+1;
2102 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
2103
2104 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
2105 kernel->height*sizeof(*kernel->values));
2106 if (kernel->values == (double *) NULL)
2107 return(DestroyKernelInfo(kernel));
2108
2109 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
2110 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
2111 kernel->positive_range += ( kernel->values[i] =
2112 args->sigma*(labs((long) u)+labs((long) v)) );
2113 kernel->maximum = kernel->values[0];
2114 break;
2115 }
2116 case OctagonalKernel:
2117 {
2118 if (args->rho < 2.0)
2119 kernel->width = kernel->height = 5; /* default/minimum radius = 2 */
2120 else
2121 kernel->width = kernel->height = ((size_t)args->rho)*2+1;
2122 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
2123
2124 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
2125 kernel->height*sizeof(*kernel->values));
2126 if (kernel->values == (double *) NULL)
2127 return(DestroyKernelInfo(kernel));
2128
2129 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
2130 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
2131 {
2132 double
2133 r1 = MagickMax(fabs((double)u),fabs((double)v)),
2134 r2 = floor((double)(labs((long)u)+labs((long)v)+1)/1.5);
2135 kernel->positive_range += kernel->values[i] =
2136 args->sigma*MagickMax(r1,r2);
2137 }
2138 kernel->maximum = kernel->values[0];
2139 break;
2140 }
2141 case EuclideanKernel:
2142 {
2143 if (args->rho < 1.0)
2144 kernel->width = kernel->height = 3; /* default radius = 1 */
2145 else
2146 kernel->width = kernel->height = ((size_t)args->rho)*2+1;
2147 kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2;
2148
2149 kernel->values=(double *) AcquireAlignedMemory(kernel->width,
2150 kernel->height*sizeof(*kernel->values));
2151 if (kernel->values == (double *) NULL)
2152 return(DestroyKernelInfo(kernel));
2153
2154 for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++)
2155 for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++)
2156 kernel->positive_range += ( kernel->values[i] =
2157 args->sigma*sqrt((double) (u*u+v*v)) );
2158 kernel->maximum = kernel->values[0];
2159 break;
2160 }
2161 default:
2162 {
2163 /* No-Op Kernel - Basically just a single pixel on its own */
2164 kernel=ParseKernelArray("1:1");
2165 if (kernel == (KernelInfo *) NULL)
2166 return(kernel);
2167 kernel->type = UndefinedKernel;
2168 break;
2169 }
2170 break;
2171 }
2172 return(kernel);
2173}
2174
2175
2176/*
2177%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2178% %
2179% %
2180% %
2181% C l o n e K e r n e l I n f o %
2182% %
2183% %
2184% %
2185%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2186%
2187% CloneKernelInfo() creates a new clone of the given Kernel List so that its
2188% can be modified without effecting the original. The cloned kernel should
2189% be destroyed using DestroyKernelInfo() when no longer needed.
2190%
2191% The format of the CloneKernelInfo method is:
2192%
2193% KernelInfo *CloneKernelInfo(const KernelInfo *kernel)
2194%
2195% A description of each parameter follows:
2196%
2197% o kernel: the Morphology/Convolution kernel to be cloned
2198%
2199*/
2200MagickExport KernelInfo *CloneKernelInfo(const KernelInfo *kernel)
2201{
2202 ssize_t
2203 i;
2204
2206 *new_kernel;
2207
2208 assert(kernel != (KernelInfo *) NULL);
2209 new_kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
2210 if (new_kernel == (KernelInfo *) NULL)
2211 return(new_kernel);
2212 *new_kernel=(*kernel); /* copy values in structure */
2213
2214 /* replace the values with a copy of the values */
2215 new_kernel->values=(double *) AcquireAlignedMemory(kernel->width,
2216 kernel->height*sizeof(*kernel->values));
2217 if (new_kernel->values == (double *) NULL)
2218 return(DestroyKernelInfo(new_kernel));
2219 for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++)
2220 new_kernel->values[i]=kernel->values[i];
2221
2222 /* Also clone the next kernel in the kernel list */
2223 if ( kernel->next != (KernelInfo *) NULL ) {
2224 new_kernel->next = CloneKernelInfo(kernel->next);
2225 if ( new_kernel->next == (KernelInfo *) NULL )
2226 return(DestroyKernelInfo(new_kernel));
2227 }
2228
2229 return(new_kernel);
2230}
2231
2232
2233/*
2234%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2235% %
2236% %
2237% %
2238% D e s t r o y K e r n e l I n f o %
2239% %
2240% %
2241% %
2242%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2243%
2244% DestroyKernelInfo() frees the memory used by a Convolution/Morphology
2245% kernel.
2246%
2247% The format of the DestroyKernelInfo method is:
2248%
2249% KernelInfo *DestroyKernelInfo(KernelInfo *kernel)
2250%
2251% A description of each parameter follows:
2252%
2253% o kernel: the Morphology/Convolution kernel to be destroyed
2254%
2255*/
2256MagickExport KernelInfo *DestroyKernelInfo(KernelInfo *kernel)
2257{
2258 assert(kernel != (KernelInfo *) NULL);
2259 if (kernel->next != (KernelInfo *) NULL)
2260 kernel->next=DestroyKernelInfo(kernel->next);
2261 kernel->values=(double *) RelinquishAlignedMemory(kernel->values);
2262 kernel=(KernelInfo *) RelinquishMagickMemory(kernel);
2263 return(kernel);
2264}
2265
2266/*
2267%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2268% %
2269% %
2270% %
2271+ E x p a n d M i r r o r K e r n e l I n f o %
2272% %
2273% %
2274% %
2275%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2276%
2277% ExpandMirrorKernelInfo() takes a single kernel, and expands it into a
2278% sequence of 90-degree rotated kernels but providing a reflected 180
2279% rotation, before the -/+ 90-degree rotations.
2280%
2281% This special rotation order produces a better, more symmetrical thinning of
2282% objects.
2283%
2284% The format of the ExpandMirrorKernelInfo method is:
2285%
2286% void ExpandMirrorKernelInfo(KernelInfo *kernel)
2287%
2288% A description of each parameter follows:
2289%
2290% o kernel: the Morphology/Convolution kernel
2291%
2292% This function is only internal to this module, as it is not finalized,
2293% especially with regard to non-orthogonal angles, and rotation of larger
2294% 2D kernels.
2295*/
2296
2297#if 0
2298static void FlopKernelInfo(KernelInfo *kernel)
2299 { /* Do a Flop by reversing each row. */
2300 size_t
2301 y;
2302 ssize_t
2303 x,r;
2304 double
2305 *k,t;
2306
2307 for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width)
2308 for ( x=0, r=kernel->width-1; x<kernel->width/2; x++, r--)
2309 t=k[x], k[x]=k[r], k[r]=t;
2310
2311 kernel->x = kernel->width - kernel->x - 1;
2312 angle = fmod(angle+180.0, 360.0);
2313 }
2314#endif
2315
2316static void ExpandMirrorKernelInfo(KernelInfo *kernel)
2317{
2319 *clone,
2320 *last;
2321
2322 last = kernel;
2323
2324 clone = CloneKernelInfo(last);
2325 if (clone == (KernelInfo *) NULL)
2326 return;
2327 RotateKernelInfo(clone, 180); /* flip */
2328 LastKernelInfo(last)->next = clone;
2329 last = clone;
2330
2331 clone = CloneKernelInfo(last);
2332 if (clone == (KernelInfo *) NULL)
2333 return;
2334 RotateKernelInfo(clone, 90); /* transpose */
2335 LastKernelInfo(last)->next = clone;
2336 last = clone;
2337
2338 clone = CloneKernelInfo(last);
2339 if (clone == (KernelInfo *) NULL)
2340 return;
2341 RotateKernelInfo(clone, 180); /* flop */
2342 LastKernelInfo(last)->next = clone;
2343
2344 return;
2345}
2346
2347
2348/*
2349%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2350% %
2351% %
2352% %
2353+ E x p a n d R o t a t e K e r n e l I n f o %
2354% %
2355% %
2356% %
2357%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2358%
2359% ExpandRotateKernelInfo() takes a kernel list, and expands it by rotating
2360% incrementally by the angle given, until the kernel repeats.
2361%
2362% WARNING: 45 degree rotations only works for 3x3 kernels.
2363% While 90 degree rotations only works for linear and square kernels
2364%
2365% The format of the ExpandRotateKernelInfo method is:
2366%
2367% void ExpandRotateKernelInfo(KernelInfo *kernel,double angle)
2368%
2369% A description of each parameter follows:
2370%
2371% o kernel: the Morphology/Convolution kernel
2372%
2373% o angle: angle to rotate in degrees
2374%
2375% This function is only internal to this module, as it is not finalized,
2376% especially with regard to non-orthogonal angles, and rotation of larger
2377% 2D kernels.
2378*/
2379
2380/* Internal Routine - Return true if two kernels are the same */
2381static MagickBooleanType SameKernelInfo(const KernelInfo *kernel1,
2382 const KernelInfo *kernel2)
2383{
2384 size_t
2385 i;
2386
2387 /* check size and origin location */
2388 if ( kernel1->width != kernel2->width
2389 || kernel1->height != kernel2->height
2390 || kernel1->x != kernel2->x
2391 || kernel1->y != kernel2->y )
2392 return MagickFalse;
2393
2394 /* check actual kernel values */
2395 for (i=0; i < (kernel1->width*kernel1->height); i++) {
2396 /* Test for Nan equivalence */
2397 if ( IsNaN(kernel1->values[i]) && !IsNaN(kernel2->values[i]) )
2398 return MagickFalse;
2399 if ( IsNaN(kernel2->values[i]) && !IsNaN(kernel1->values[i]) )
2400 return MagickFalse;
2401 /* Test actual values are equivalent */
2402 if ( fabs(kernel1->values[i] - kernel2->values[i]) >= MagickEpsilon )
2403 return MagickFalse;
2404 }
2405
2406 return MagickTrue;
2407}
2408
2409static void ExpandRotateKernelInfo(KernelInfo *kernel,const double angle)
2410{
2412 *clone_info,
2413 *last;
2414
2415 clone_info=(KernelInfo *) NULL;
2416 last=kernel;
2417DisableMSCWarning(4127)
2418 while (1) {
2419RestoreMSCWarning
2420 clone_info=CloneKernelInfo(last);
2421 if (clone_info == (KernelInfo *) NULL)
2422 break;
2423 RotateKernelInfo(clone_info,angle);
2424 if (SameKernelInfo(kernel,clone_info) != MagickFalse)
2425 break;
2426 LastKernelInfo(last)->next=clone_info;
2427 last=clone_info;
2428 }
2429 if (clone_info != (KernelInfo *) NULL)
2430 clone_info=DestroyKernelInfo(clone_info); /* kernel repeated - junk */
2431 return;
2432}
2433
2434
2435/*
2436%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2437% %
2438% %
2439% %
2440+ C a l c M e t a K e r n a l I n f o %
2441% %
2442% %
2443% %
2444%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2445%
2446% CalcKernelMetaData() recalculate the KernelInfo meta-data of this kernel only,
2447% using the kernel values. This should only ne used if it is not possible to
2448% calculate that meta-data in some easier way.
2449%
2450% It is important that the meta-data is correct before ScaleKernelInfo() is
2451% used to perform kernel normalization.
2452%
2453% The format of the CalcKernelMetaData method is:
2454%
2455% void CalcKernelMetaData(KernelInfo *kernel, const double scale )
2456%
2457% A description of each parameter follows:
2458%
2459% o kernel: the Morphology/Convolution kernel to modify
2460%
2461% WARNING: Minimum and Maximum values are assumed to include zero, even if
2462% zero is not part of the kernel (as in Gaussian Derived kernels). This
2463% however is not true for flat-shaped morphological kernels.
2464%
2465% WARNING: Only the specific kernel pointed to is modified, not a list of
2466% multiple kernels.
2467%
2468% This is an internal function and not expected to be useful outside this
2469% module. This could change however.
2470*/
2471static void CalcKernelMetaData(KernelInfo *kernel)
2472{
2473 size_t
2474 i;
2475
2476 kernel->minimum = kernel->maximum = 0.0;
2477 kernel->negative_range = kernel->positive_range = 0.0;
2478 for (i=0; i < (kernel->width*kernel->height); i++)
2479 {
2480 if ( fabs(kernel->values[i]) < MagickEpsilon )
2481 kernel->values[i] = 0.0;
2482 ( kernel->values[i] < 0)
2483 ? ( kernel->negative_range += kernel->values[i] )
2484 : ( kernel->positive_range += kernel->values[i] );
2485 Minimize(kernel->minimum, kernel->values[i]);
2486 Maximize(kernel->maximum, kernel->values[i]);
2487 }
2488
2489 return;
2490}
2491
2492
2493/*
2494%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2495% %
2496% %
2497% %
2498% M o r p h o l o g y A p p l y %
2499% %
2500% %
2501% %
2502%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2503%
2504% MorphologyApply() applies a morphological method, multiple times using
2505% a list of multiple kernels. This is the method that should be called by
2506% other 'operators' that internally use morphology operations as part of
2507% their processing.
2508%
2509% It is basically equivalent to as MorphologyImage() (see below) but
2510% without any user controls. This allows internel programs to use this
2511% function, to actually perform a specific task without possible interference
2512% by any API user supplied settings.
2513%
2514% It is MorphologyImage() task to extract any such user controls, and
2515% pass them to this function for processing.
2516%
2517% More specifically all given kernels should already be scaled, normalised,
2518% and blended appropriately before being parred to this routine. The
2519% appropriate bias, and compose (typically 'UndefinedComposeOp') given.
2520%
2521% The format of the MorphologyApply method is:
2522%
2523% Image *MorphologyApply(const Image *image,MorphologyMethod method,
2524% const ChannelType channel, const ssize_t iterations,
2525% const KernelInfo *kernel, const CompositeMethod compose,
2526% const double bias, ExceptionInfo *exception)
2527%
2528% A description of each parameter follows:
2529%
2530% o image: the source image
2531%
2532% o method: the morphology method to be applied.
2533%
2534% o channel: the channels to which the operations are applied
2535% The channel 'sync' flag determines if 'alpha weighting' is
2536% applied for convolution style operations.
2537%
2538% o iterations: apply the operation this many times (or no change).
2539% A value of -1 means loop until no change found.
2540% How this is applied may depend on the morphology method.
2541% Typically this is a value of 1.
2542%
2543% o channel: the channel type.
2544%
2545% o kernel: An array of double representing the morphology kernel.
2546%
2547% o compose: How to handle or merge multi-kernel results.
2548% If 'UndefinedCompositeOp' use default for the Morphology method.
2549% If 'NoCompositeOp' force image to be re-iterated by each kernel.
2550% Otherwise merge the results using the compose method given.
2551%
2552% o bias: Convolution Output Bias.
2553%
2554% o exception: return any errors or warnings in this structure.
2555%
2556*/
2557
2558/* Apply a Morphology Primative to an image using the given kernel.
2559** Two pre-created images must be provided, and no image is created.
2560** It returns the number of pixels that changed between the images
2561** for result convergence determination.
2562*/
2563static ssize_t MorphologyPrimitive(const Image *image, Image *result_image,
2564 const MorphologyMethod method, const ChannelType channel,
2565 const KernelInfo *kernel,const double bias,ExceptionInfo *exception)
2566{
2567#define MorphologyTag "Morphology/Image"
2568
2569 CacheView
2570 *p_view,
2571 *q_view;
2572
2573 ssize_t
2574 i;
2575
2576 size_t
2577 *changes,
2578 changed,
2579 virt_width;
2580
2581 ssize_t
2582 y,
2583 offx,
2584 offy;
2585
2586 MagickBooleanType
2587 status;
2588
2589 MagickOffsetType
2590 progress;
2591
2592 assert(image != (Image *) NULL);
2593 assert(image->signature == MagickCoreSignature);
2594 assert(result_image != (Image *) NULL);
2595 assert(result_image->signature == MagickCoreSignature);
2596 assert(kernel != (KernelInfo *) NULL);
2597 assert(kernel->signature == MagickCoreSignature);
2598 assert(exception != (ExceptionInfo *) NULL);
2599 assert(exception->signature == MagickCoreSignature);
2600
2601 status=MagickTrue;
2602 progress=0;
2603
2604 p_view=AcquireVirtualCacheView(image,exception);
2605 q_view=AcquireAuthenticCacheView(result_image,exception);
2606 virt_width=image->columns+kernel->width-1;
2607
2608 /* Some methods (including convolve) needs use a reflected kernel.
2609 * Adjust 'origin' offsets to loop though kernel as a reflection.
2610 */
2611 offx = kernel->x;
2612 offy = kernel->y;
2613 switch(method) {
2614 case ConvolveMorphology:
2615 case DilateMorphology:
2616 case DilateIntensityMorphology:
2617 case IterativeDistanceMorphology:
2618 /* kernel needs to used with reflection about origin */
2619 offx = (ssize_t) kernel->width-offx-1;
2620 offy = (ssize_t) kernel->height-offy-1;
2621 break;
2622 case ErodeMorphology:
2623 case ErodeIntensityMorphology:
2624 case HitAndMissMorphology:
2625 case ThinningMorphology:
2626 case ThickenMorphology:
2627 /* kernel is used as is, without reflection */
2628 break;
2629 default:
2630 assert("Not a Primitive Morphology Method" != (char *) NULL);
2631 break;
2632 }
2633 changed=0;
2634 changes=(size_t *) AcquireQuantumMemory(GetOpenMPMaximumThreads(),
2635 sizeof(*changes));
2636 if (changes == (size_t *) NULL)
2637 ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
2638 for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++)
2639 changes[i]=0;
2640 if ( method == ConvolveMorphology && kernel->width == 1 )
2641 { /* Special handling (for speed) of vertical (blur) kernels.
2642 ** This performs its handling in columns rather than in rows.
2643 ** This is only done for convolve as it is the only method that
2644 ** generates very large 1-D vertical kernels (such as a 'BlurKernel')
2645 **
2646 ** Timing tests (on single CPU laptop)
2647 ** Using a vertical 1-d Blue with normal row-by-row (below)
2648 ** time convert logo: -morphology Convolve Blur:0x10+90 null:
2649 ** 0.807u
2650 ** Using this column method
2651 ** time convert logo: -morphology Convolve Blur:0x10+90 null:
2652 ** 0.620u
2653 **
2654 ** Anthony Thyssen, 14 June 2010
2655 */
2656 ssize_t
2657 x;
2658
2659#if defined(MAGICKCORE_OPENMP_SUPPORT)
2660 #pragma omp parallel for schedule(static) shared(progress,status) \
2661 magick_number_threads(image,result_image,image->columns,1)
2662#endif
2663 for (x=0; x < (ssize_t) image->columns; x++)
2664 {
2665 const int
2666 id = GetOpenMPThreadId();
2667
2668 const PixelPacket
2669 *magick_restrict p;
2670
2671 const IndexPacket
2672 *magick_restrict p_indexes;
2673
2675 *magick_restrict q;
2676
2677 IndexPacket
2678 *magick_restrict q_indexes;
2679
2680 ssize_t
2681 y;
2682
2683 ssize_t
2684 r;
2685
2686 if (status == MagickFalse)
2687 continue;
2688 p=GetCacheViewVirtualPixels(p_view,x,-offy,1,image->rows+kernel->height-1,
2689 exception);
2690 q=GetCacheViewAuthenticPixels(q_view,x,0,1,result_image->rows,exception);
2691 if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
2692 {
2693 status=MagickFalse;
2694 continue;
2695 }
2696 p_indexes=GetCacheViewVirtualIndexQueue(p_view);
2697 q_indexes=GetCacheViewAuthenticIndexQueue(q_view);
2698
2699 /* offset to origin in 'p'. while 'q' points to it directly */
2700 r = offy;
2701
2702 for (y=0; y < (ssize_t) image->rows; y++)
2703 {
2705 result;
2706
2707 ssize_t
2708 v;
2709
2710 const double
2711 *magick_restrict k;
2712
2713 const PixelPacket
2714 *magick_restrict k_pixels;
2715
2716 const IndexPacket
2717 *magick_restrict k_indexes;
2718
2719 /* Copy input image to the output image for unused channels
2720 * This removes need for 'cloning' a new image every iteration
2721 */
2722 *q = p[r];
2723 if (image->colorspace == CMYKColorspace)
2724 SetPixelIndex(q_indexes+y,GetPixelIndex(p_indexes+y+r));
2725
2726 /* Set the bias of the weighted average output */
2727 result.red =
2728 result.green =
2729 result.blue =
2730 result.opacity =
2731 result.index = bias;
2732
2733
2734 /* Weighted Average of pixels using reflected kernel
2735 **
2736 ** NOTE for correct working of this operation for asymetrical
2737 ** kernels, the kernel needs to be applied in its reflected form.
2738 ** That is its values needs to be reversed.
2739 */
2740 k = &kernel->values[ kernel->height-1 ];
2741 k_pixels = p;
2742 k_indexes = p_indexes+y;
2743 if ( ((channel & SyncChannels) == 0 ) ||
2744 (image->matte == MagickFalse) )
2745 { /* No 'Sync' involved.
2746 ** Convolution is simple greyscale channel operation
2747 */
2748 for (v=0; v < (ssize_t) kernel->height; v++) {
2749 if ( IsNaN(*k) ) continue;
2750 result.red += (*k)*(double) GetPixelRed(k_pixels);
2751 result.green += (*k)*(double) GetPixelGreen(k_pixels);
2752 result.blue += (*k)*(double) GetPixelBlue(k_pixels);
2753 result.opacity += (*k)*(double) GetPixelOpacity(k_pixels);
2754 if ( image->colorspace == CMYKColorspace)
2755 result.index += (*k)*(double) (*k_indexes);
2756 k--;
2757 k_pixels++;
2758 k_indexes++;
2759 }
2760 if ((channel & RedChannel) != 0)
2761 SetPixelRed(q,ClampToQuantum(result.red));
2762 if ((channel & GreenChannel) != 0)
2763 SetPixelGreen(q,ClampToQuantum(result.green));
2764 if ((channel & BlueChannel) != 0)
2765 SetPixelBlue(q,ClampToQuantum(result.blue));
2766 if (((channel & OpacityChannel) != 0) &&
2767 (image->matte != MagickFalse))
2768 SetPixelOpacity(q,ClampToQuantum(result.opacity));
2769 if (((channel & IndexChannel) != 0) &&
2770 (image->colorspace == CMYKColorspace))
2771 SetPixelIndex(q_indexes+y,ClampToQuantum(result.index));
2772 }
2773 else
2774 { /* Channel 'Sync' Flag, and Alpha Channel enabled.
2775 ** Weight the color channels with Alpha Channel so that
2776 ** transparent pixels are not part of the results.
2777 */
2778 double
2779 gamma; /* divisor, sum of color alpha weighting */
2780
2781 MagickRealType
2782 alpha; /* alpha weighting for colors : alpha */
2783
2784 size_t
2785 count; /* alpha valus collected, number kernel values */
2786
2787 count=0;
2788 gamma=0.0;
2789 for (v=0; v < (ssize_t) kernel->height; v++) {
2790 if ( IsNaN(*k) ) continue;
2791 alpha=QuantumScale*((double) QuantumRange-(double)
2792 GetPixelOpacity(k_pixels));
2793 count++; /* number of alpha values collected */
2794 alpha*=(*k); /* include kernel weighting now */
2795 gamma += alpha; /* normalize alpha weights only */
2796 result.red += alpha*(double) GetPixelRed(k_pixels);
2797 result.green += alpha*(double) GetPixelGreen(k_pixels);
2798 result.blue += alpha*(double) GetPixelBlue(k_pixels);
2799 result.opacity += (*k)*(double) GetPixelOpacity(k_pixels);
2800 if ( image->colorspace == CMYKColorspace)
2801 result.index += alpha*(double) (*k_indexes);
2802 k--;
2803 k_pixels++;
2804 k_indexes++;
2805 }
2806 /* Sync'ed channels, all channels are modified */
2807 gamma=PerceptibleReciprocal(gamma);
2808 if (count != 0)
2809 gamma*=(double) kernel->height/count;
2810 SetPixelRed(q,ClampToQuantum(gamma*result.red));
2811 SetPixelGreen(q,ClampToQuantum(gamma*result.green));
2812 SetPixelBlue(q,ClampToQuantum(gamma*result.blue));
2813 SetPixelOpacity(q,ClampToQuantum(result.opacity));
2814 if (image->colorspace == CMYKColorspace)
2815 SetPixelIndex(q_indexes+y,ClampToQuantum(gamma*result.index));
2816 }
2817
2818 /* Count up changed pixels */
2819 if ( ( p[r].red != GetPixelRed(q))
2820 || ( p[r].green != GetPixelGreen(q))
2821 || ( p[r].blue != GetPixelBlue(q))
2822 || ( (image->matte != MagickFalse) &&
2823 (p[r].opacity != GetPixelOpacity(q)))
2824 || ( (image->colorspace == CMYKColorspace) &&
2825 (GetPixelIndex(p_indexes+y+r) != GetPixelIndex(q_indexes+y))) )
2826 changes[id]++;
2827 p++;
2828 q++;
2829 } /* y */
2830 if ( SyncCacheViewAuthenticPixels(q_view,exception) == MagickFalse)
2831 status=MagickFalse;
2832 if (image->progress_monitor != (MagickProgressMonitor) NULL)
2833 {
2834 MagickBooleanType
2835 proceed;
2836
2837#if defined(MAGICKCORE_OPENMP_SUPPORT)
2838 #pragma omp atomic
2839#endif
2840 progress++;
2841 proceed=SetImageProgress(image,MorphologyTag,progress,image->columns);
2842 if (proceed == MagickFalse)
2843 status=MagickFalse;
2844 }
2845 } /* x */
2846 result_image->type=image->type;
2847 q_view=DestroyCacheView(q_view);
2848 p_view=DestroyCacheView(p_view);
2849 for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++)
2850 changed+=changes[i];
2851 changes=(size_t *) RelinquishMagickMemory(changes);
2852 return(status ? (ssize_t) changed : 0);
2853 }
2854
2855 /*
2856 ** Normal handling of horizontal or rectangular kernels (row by row)
2857 */
2858#if defined(MAGICKCORE_OPENMP_SUPPORT)
2859 #pragma omp parallel for schedule(static) shared(progress,status) \
2860 magick_number_threads(image,result_image,image->rows,1)
2861#endif
2862 for (y=0; y < (ssize_t) image->rows; y++)
2863 {
2864 const int
2865 id = GetOpenMPThreadId();
2866
2867 const PixelPacket
2868 *magick_restrict p;
2869
2870 const IndexPacket
2871 *magick_restrict p_indexes;
2872
2874 *magick_restrict q;
2875
2876 IndexPacket
2877 *magick_restrict q_indexes;
2878
2879 ssize_t
2880 x;
2881
2882 size_t
2883 r;
2884
2885 if (status == MagickFalse)
2886 continue;
2887 p=GetCacheViewVirtualPixels(p_view, -offx, y-offy, virt_width,
2888 kernel->height, exception);
2889 q=GetCacheViewAuthenticPixels(q_view,0,y,result_image->columns,1,
2890 exception);
2891 if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
2892 {
2893 status=MagickFalse;
2894 continue;
2895 }
2896 p_indexes=GetCacheViewVirtualIndexQueue(p_view);
2897 q_indexes=GetCacheViewAuthenticIndexQueue(q_view);
2898
2899 /* offset to origin in 'p'. while 'q' points to it directly */
2900 r = virt_width*offy + offx;
2901
2902 for (x=0; x < (ssize_t) image->columns; x++)
2903 {
2904 ssize_t
2905 v;
2906
2907 ssize_t
2908 u;
2909
2910 const double
2911 *magick_restrict k;
2912
2913 const PixelPacket
2914 *magick_restrict k_pixels;
2915
2916 const IndexPacket
2917 *magick_restrict k_indexes;
2918
2920 result,
2921 min,
2922 max;
2923
2924 /* Copy input image to the output image for unused channels
2925 * This removes need for 'cloning' a new image every iteration
2926 */
2927 *q = p[r];
2928 if (image->colorspace == CMYKColorspace)
2929 SetPixelIndex(q_indexes+x,GetPixelIndex(p_indexes+x+r));
2930
2931 /* Defaults */
2932 min.red =
2933 min.green =
2934 min.blue =
2935 min.opacity =
2936 min.index = (double) QuantumRange;
2937 max.red =
2938 max.green =
2939 max.blue =
2940 max.opacity =
2941 max.index = 0.0;
2942 /* default result is the original pixel value */
2943 result.red = (double) p[r].red;
2944 result.green = (double) p[r].green;
2945 result.blue = (double) p[r].blue;
2946 result.opacity = (double) QuantumRange - (double) p[r].opacity;
2947 result.index = 0.0;
2948 if ( image->colorspace == CMYKColorspace)
2949 result.index = (double) GetPixelIndex(p_indexes+x+r);
2950
2951 switch (method) {
2952 case ConvolveMorphology:
2953 /* Set the bias of the weighted average output */
2954 result.red =
2955 result.green =
2956 result.blue =
2957 result.opacity =
2958 result.index = bias;
2959 break;
2960 case DilateIntensityMorphology:
2961 case ErodeIntensityMorphology:
2962 /* use a boolean flag indicating when first match found */
2963 result.red = 0.0; /* result is not used otherwise */
2964 break;
2965 default:
2966 break;
2967 }
2968
2969 switch ( method ) {
2970 case ConvolveMorphology:
2971 /* Weighted Average of pixels using reflected kernel
2972 **
2973 ** NOTE for correct working of this operation for asymetrical
2974 ** kernels, the kernel needs to be applied in its reflected form.
2975 ** That is its values needs to be reversed.
2976 **
2977 ** Correlation is actually the same as this but without reflecting
2978 ** the kernel, and thus 'lower-level' that Convolution. However
2979 ** as Convolution is the more common method used, and it does not
2980 ** really cost us much in terms of processing to use a reflected
2981 ** kernel, so it is Convolution that is implemented.
2982 **
2983 ** Correlation will have its kernel reflected before calling
2984 ** this function to do a Convolve.
2985 **
2986 ** For more details of Correlation vs Convolution see
2987 ** http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf
2988 */
2989 k = &kernel->values[ kernel->width*kernel->height-1 ];
2990 k_pixels = p;
2991 k_indexes = p_indexes+x;
2992 if ( ((channel & SyncChannels) == 0 ) ||
2993 (image->matte == MagickFalse) )
2994 { /* No 'Sync' involved.
2995 ** Convolution is simple greyscale channel operation
2996 */
2997 for (v=0; v < (ssize_t) kernel->height; v++) {
2998 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
2999 if ( IsNaN(*k) ) continue;
3000 result.red += (*k)*(double) k_pixels[u].red;
3001 result.green += (*k)*(double) k_pixels[u].green;
3002 result.blue += (*k)*(double) k_pixels[u].blue;
3003 result.opacity += (*k)*(double) k_pixels[u].opacity;
3004 if ( image->colorspace == CMYKColorspace)
3005 result.index += (*k)*(double) GetPixelIndex(k_indexes+u);
3006 }
3007 k_pixels += virt_width;
3008 k_indexes += virt_width;
3009 }
3010 if ((channel & RedChannel) != 0)
3011 SetPixelRed(q,ClampToQuantum((MagickRealType) result.red));
3012 if ((channel & GreenChannel) != 0)
3013 SetPixelGreen(q,ClampToQuantum((MagickRealType) result.green));
3014 if ((channel & BlueChannel) != 0)
3015 SetPixelBlue(q,ClampToQuantum((MagickRealType) result.blue));
3016 if (((channel & OpacityChannel) != 0) &&
3017 (image->matte != MagickFalse))
3018 SetPixelOpacity(q,ClampToQuantum((MagickRealType) result.opacity));
3019 if (((channel & IndexChannel) != 0) &&
3020 (image->colorspace == CMYKColorspace))
3021 SetPixelIndex(q_indexes+x,ClampToQuantum(result.index));
3022 }
3023 else
3024 { /* Channel 'Sync' Flag, and Alpha Channel enabled.
3025 ** Weight the color channels with Alpha Channel so that
3026 ** transparent pixels are not part of the results.
3027 */
3028 double
3029 alpha, /* alpha weighting for colors : alpha */
3030 gamma; /* divisor, sum of color alpha weighting */
3031
3032 size_t
3033 count; /* alpha valus collected, number kernel values */
3034
3035 count=0;
3036 gamma=0.0;
3037 for (v=0; v < (ssize_t) kernel->height; v++) {
3038 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
3039 if ( IsNaN(*k) ) continue;
3040 alpha=QuantumScale*((double) QuantumRange-(double)
3041 k_pixels[u].opacity);
3042 count++; /* number of alpha values collected */
3043 alpha*=(*k); /* include kernel weighting now */
3044 gamma += alpha; /* normalize alpha weights only */
3045 result.red += alpha*(double) k_pixels[u].red;
3046 result.green += alpha*(double) k_pixels[u].green;
3047 result.blue += alpha*(double) k_pixels[u].blue;
3048 result.opacity += (*k)*(double) k_pixels[u].opacity;
3049 if ( image->colorspace == CMYKColorspace)
3050 result.index+=alpha*(double) GetPixelIndex(k_indexes+u);
3051 }
3052 k_pixels += virt_width;
3053 k_indexes += virt_width;
3054 }
3055 /* Sync'ed channels, all channels are modified */
3056 gamma=PerceptibleReciprocal(gamma);
3057 if (count != 0)
3058 gamma*=(double) kernel->height*kernel->width/count;
3059 SetPixelRed(q,ClampToQuantum((MagickRealType) (gamma*result.red)));
3060 SetPixelGreen(q,ClampToQuantum((MagickRealType) (gamma*result.green)));
3061 SetPixelBlue(q,ClampToQuantum((MagickRealType) (gamma*result.blue)));
3062 SetPixelOpacity(q,ClampToQuantum(result.opacity));
3063 if (image->colorspace == CMYKColorspace)
3064 SetPixelIndex(q_indexes+x,ClampToQuantum((MagickRealType) (gamma*
3065 result.index)));
3066 }
3067 break;
3068
3069 case ErodeMorphology:
3070 /* Minimum Value within kernel neighbourhood
3071 **
3072 ** NOTE that the kernel is not reflected for this operation!
3073 **
3074 ** NOTE: in normal Greyscale Morphology, the kernel value should
3075 ** be added to the real value, this is currently not done, due to
3076 ** the nature of the boolean kernels being used.
3077 */
3078 k = kernel->values;
3079 k_pixels = p;
3080 k_indexes = p_indexes+x;
3081 for (v=0; v < (ssize_t) kernel->height; v++) {
3082 for (u=0; u < (ssize_t) kernel->width; u++, k++) {
3083 if ( IsNaN(*k) || (*k) < 0.5 ) continue;
3084 Minimize(min.red, (double) k_pixels[u].red);
3085 Minimize(min.green, (double) k_pixels[u].green);
3086 Minimize(min.blue, (double) k_pixels[u].blue);
3087 Minimize(min.opacity,(double) QuantumRange-(double)
3088 k_pixels[u].opacity);
3089 if ( image->colorspace == CMYKColorspace)
3090 Minimize(min.index,(double) GetPixelIndex(k_indexes+u));
3091 }
3092 k_pixels += virt_width;
3093 k_indexes += virt_width;
3094 }
3095 break;
3096
3097 case DilateMorphology:
3098 /* Maximum Value within kernel neighbourhood
3099 **
3100 ** NOTE for correct working of this operation for asymetrical
3101 ** kernels, the kernel needs to be applied in its reflected form.
3102 ** That is its values needs to be reversed.
3103 **
3104 ** NOTE: in normal Greyscale Morphology, the kernel value should
3105 ** be added to the real value, this is currently not done, due to
3106 ** the nature of the boolean kernels being used.
3107 **
3108 */
3109 k = &kernel->values[ kernel->width*kernel->height-1 ];
3110 k_pixels = p;
3111 k_indexes = p_indexes+x;
3112 for (v=0; v < (ssize_t) kernel->height; v++) {
3113 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
3114 if ( IsNaN(*k) || (*k) < 0.5 ) continue;
3115 Maximize(max.red, (double) k_pixels[u].red);
3116 Maximize(max.green, (double) k_pixels[u].green);
3117 Maximize(max.blue, (double) k_pixels[u].blue);
3118 Maximize(max.opacity,(double) QuantumRange-(double)
3119 k_pixels[u].opacity);
3120 if ( image->colorspace == CMYKColorspace)
3121 Maximize(max.index, (double) GetPixelIndex(
3122 k_indexes+u));
3123 }
3124 k_pixels += virt_width;
3125 k_indexes += virt_width;
3126 }
3127 break;
3128
3129 case HitAndMissMorphology:
3130 case ThinningMorphology:
3131 case ThickenMorphology:
3132 /* Minimum of Foreground Pixel minus Maxumum of Background Pixels
3133 **
3134 ** NOTE that the kernel is not reflected for this operation,
3135 ** and consists of both foreground and background pixel
3136 ** neighbourhoods, 0.0 for background, and 1.0 for foreground
3137 ** with either Nan or 0.5 values for don't care.
3138 **
3139 ** Note that this will never produce a meaningless negative
3140 ** result. Such results can cause Thinning/Thicken to not work
3141 ** correctly when used against a greyscale image.
3142 */
3143 k = kernel->values;
3144 k_pixels = p;
3145 k_indexes = p_indexes+x;
3146 for (v=0; v < (ssize_t) kernel->height; v++) {
3147 for (u=0; u < (ssize_t) kernel->width; u++, k++) {
3148 if ( IsNaN(*k) ) continue;
3149 if ( (*k) > 0.7 )
3150 { /* minimim of foreground pixels */
3151 Minimize(min.red, (double) k_pixels[u].red);
3152 Minimize(min.green, (double) k_pixels[u].green);
3153 Minimize(min.blue, (double) k_pixels[u].blue);
3154 Minimize(min.opacity, (double) QuantumRange-(double)
3155 k_pixels[u].opacity);
3156 if ( image->colorspace == CMYKColorspace)
3157 Minimize(min.index,(double) GetPixelIndex(
3158 k_indexes+u));
3159 }
3160 else if ( (*k) < 0.3 )
3161 { /* maximum of background pixels */
3162 Maximize(max.red, (double) k_pixels[u].red);
3163 Maximize(max.green, (double) k_pixels[u].green);
3164 Maximize(max.blue, (double) k_pixels[u].blue);
3165 Maximize(max.opacity,(double) QuantumRange-(double)
3166 k_pixels[u].opacity);
3167 if ( image->colorspace == CMYKColorspace)
3168 Maximize(max.index, (double) GetPixelIndex(
3169 k_indexes+u));
3170 }
3171 }
3172 k_pixels += virt_width;
3173 k_indexes += virt_width;
3174 }
3175 /* Pattern Match if difference is positive */
3176 min.red -= max.red; Maximize( min.red, 0.0 );
3177 min.green -= max.green; Maximize( min.green, 0.0 );
3178 min.blue -= max.blue; Maximize( min.blue, 0.0 );
3179 min.opacity -= max.opacity; Maximize( min.opacity, 0.0 );
3180 min.index -= max.index; Maximize( min.index, 0.0 );
3181 break;
3182
3183 case ErodeIntensityMorphology:
3184 /* Select Pixel with Minimum Intensity within kernel neighbourhood
3185 **
3186 ** WARNING: the intensity test fails for CMYK and does not
3187 ** take into account the moderating effect of the alpha channel
3188 ** on the intensity.
3189 **
3190 ** NOTE that the kernel is not reflected for this operation!
3191 */
3192 k = kernel->values;
3193 k_pixels = p;
3194 k_indexes = p_indexes+x;
3195 for (v=0; v < (ssize_t) kernel->height; v++) {
3196 for (u=0; u < (ssize_t) kernel->width; u++, k++) {
3197 if ( IsNaN(*k) || (*k) < 0.5 ) continue;
3198 if ( result.red == 0.0 ||
3199 GetPixelIntensity(image,&(k_pixels[u])) < GetPixelIntensity(result_image,q) ) {
3200 /* copy the whole pixel - no channel selection */
3201 *q = k_pixels[u];
3202
3203 if ( result.red > 0.0 ) changes[id]++;
3204 result.red = 1.0;
3205 }
3206 }
3207 k_pixels += virt_width;
3208 k_indexes += virt_width;
3209 }
3210 break;
3211
3212 case DilateIntensityMorphology:
3213 /* Select Pixel with Maximum Intensity within kernel neighbourhood
3214 **
3215 ** WARNING: the intensity test fails for CMYK and does not
3216 ** take into account the moderating effect of the alpha channel
3217 ** on the intensity (yet).
3218 **
3219 ** NOTE for correct working of this operation for asymetrical
3220 ** kernels, the kernel needs to be applied in its reflected form.
3221 ** That is its values needs to be reversed.
3222 */
3223 k = &kernel->values[ kernel->width*kernel->height-1 ];
3224 k_pixels = p;
3225 k_indexes = p_indexes+x;
3226 for (v=0; v < (ssize_t) kernel->height; v++) {
3227 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
3228 if ( IsNaN(*k) || (*k) < 0.5 ) continue; /* boolean kernel */
3229 if ( result.red == 0.0 ||
3230 GetPixelIntensity(image,&(k_pixels[u])) > GetPixelIntensity(result_image,q) ) {
3231 /* copy the whole pixel - no channel selection */
3232 *q = k_pixels[u];
3233 if ( result.red > 0.0 ) changes[id]++;
3234 result.red = 1.0;
3235 }
3236 }
3237 k_pixels += virt_width;
3238 k_indexes += virt_width;
3239 }
3240 break;
3241
3242 case IterativeDistanceMorphology:
3243 /* Work out an iterative distance from black edge of a white image
3244 ** shape. Essentially white values are decreased to the smallest
3245 ** 'distance from edge' it can find.
3246 **
3247 ** It works by adding kernel values to the neighbourhood, and
3248 ** select the minimum value found. The kernel is rotated before
3249 ** use, so kernel distances match resulting distances, when a user
3250 ** provided asymmetric kernel is applied.
3251 **
3252 **
3253 ** This code is almost identical to True GrayScale Morphology But
3254 ** not quite.
3255 **
3256 ** GreyDilate Kernel values added, maximum value found Kernel is
3257 ** rotated before use.
3258 **
3259 ** GrayErode: Kernel values subtracted and minimum value found No
3260 ** kernel rotation used.
3261 **
3262 ** Note the Iterative Distance method is essentially a
3263 ** GrayErode, but with negative kernel values, and kernel
3264 ** rotation applied.
3265 */
3266 k = &kernel->values[ kernel->width*kernel->height-1 ];
3267 k_pixels = p;
3268 k_indexes = p_indexes+x;
3269 for (v=0; v < (ssize_t) kernel->height; v++) {
3270 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
3271 if ( IsNaN(*k) ) continue;
3272 Minimize(result.red, (*k)+(double) k_pixels[u].red);
3273 Minimize(result.green, (*k)+(double) k_pixels[u].green);
3274 Minimize(result.blue, (*k)+(double) k_pixels[u].blue);
3275 Minimize(result.opacity, (*k)+(double) QuantumRange-(double)
3276 k_pixels[u].opacity);
3277 if ( image->colorspace == CMYKColorspace)
3278 Minimize(result.index,(*k)+(double) GetPixelIndex(k_indexes+u));
3279 }
3280 k_pixels += virt_width;
3281 k_indexes += virt_width;
3282 }
3283 break;
3284
3285 case UndefinedMorphology:
3286 default:
3287 break; /* Do nothing */
3288 }
3289 /* Final mathematics of results (combine with original image?)
3290 **
3291 ** NOTE: Difference Morphology operators Edge* and *Hat could also
3292 ** be done here but works better with iteration as a image difference
3293 ** in the controlling function (below). Thicken and Thinning however
3294 ** should be done here so thay can be iterated correctly.
3295 */
3296 switch ( method ) {
3297 case HitAndMissMorphology:
3298 case ErodeMorphology:
3299 result = min; /* minimum of neighbourhood */
3300 break;
3301 case DilateMorphology:
3302 result = max; /* maximum of neighbourhood */
3303 break;
3304 case ThinningMorphology:
3305 /* subtract pattern match from original */
3306 result.red -= min.red;
3307 result.green -= min.green;
3308 result.blue -= min.blue;
3309 result.opacity -= min.opacity;
3310 result.index -= min.index;
3311 break;
3312 case ThickenMorphology:
3313 /* Add the pattern matchs to the original */
3314 result.red += min.red;
3315 result.green += min.green;
3316 result.blue += min.blue;
3317 result.opacity += min.opacity;
3318 result.index += min.index;
3319 break;
3320 default:
3321 /* result directly calculated or assigned */
3322 break;
3323 }
3324 /* Assign the resulting pixel values - Clamping Result */
3325 switch ( method ) {
3326 case UndefinedMorphology:
3327 case ConvolveMorphology:
3328 case DilateIntensityMorphology:
3329 case ErodeIntensityMorphology:
3330 break; /* full pixel was directly assigned - not a channel method */
3331 default:
3332 if ((channel & RedChannel) != 0)
3333 SetPixelRed(q,ClampToQuantum(result.red));
3334 if ((channel & GreenChannel) != 0)
3335 SetPixelGreen(q,ClampToQuantum(result.green));
3336 if ((channel & BlueChannel) != 0)
3337 SetPixelBlue(q,ClampToQuantum(result.blue));
3338 if ((channel & OpacityChannel) != 0
3339 && image->matte != MagickFalse )
3340 SetPixelAlpha(q,ClampToQuantum(result.opacity));
3341 if (((channel & IndexChannel) != 0) &&
3342 (image->colorspace == CMYKColorspace))
3343 SetPixelIndex(q_indexes+x,ClampToQuantum(result.index));
3344 break;
3345 }
3346 /* Count up changed pixels */
3347 if ( ( p[r].red != GetPixelRed(q) )
3348 || ( p[r].green != GetPixelGreen(q) )
3349 || ( p[r].blue != GetPixelBlue(q) )
3350 || ( (image->matte != MagickFalse) &&
3351 (p[r].opacity != GetPixelOpacity(q)))
3352 || ( (image->colorspace == CMYKColorspace) &&
3353 (GetPixelIndex(p_indexes+x+r) != GetPixelIndex(q_indexes+x))) )
3354 changes[id]++;
3355 p++;
3356 q++;
3357 } /* x */
3358 if ( SyncCacheViewAuthenticPixels(q_view,exception) == MagickFalse)
3359 status=MagickFalse;
3360 if (image->progress_monitor != (MagickProgressMonitor) NULL)
3361 {
3362 MagickBooleanType
3363 proceed;
3364
3365#if defined(MAGICKCORE_OPENMP_SUPPORT)
3366 #pragma omp atomic
3367#endif
3368 progress++;
3369 proceed=SetImageProgress(image,MorphologyTag,progress,image->rows);
3370 if (proceed == MagickFalse)
3371 status=MagickFalse;
3372 }
3373 } /* y */
3374 q_view=DestroyCacheView(q_view);
3375 p_view=DestroyCacheView(p_view);
3376 for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++)
3377 changed+=changes[i];
3378 changes=(size_t *) RelinquishMagickMemory(changes);
3379 return(status ? (ssize_t)changed : -1);
3380}
3381
3382/* This is almost identical to the MorphologyPrimative() function above,
3383** but will apply the primitive directly to the actual image using two
3384** passes, once in each direction, with the results of the previous (and
3385** current) row being re-used.
3386**
3387** That is after each row is 'Sync'ed' into the image, the next row will
3388** make use of those values as part of the calculation of the next row.
3389** It then repeats, but going in the oppisite (bottom-up) direction.
3390**
3391** Because of this 're-use of results' this function can not make use
3392** of multi-threaded, parellel processing.
3393*/
3394static ssize_t MorphologyPrimitiveDirect(Image *image,
3395 const MorphologyMethod method, const ChannelType channel,
3396 const KernelInfo *kernel,ExceptionInfo *exception)
3397{
3398 CacheView
3399 *auth_view,
3400 *virt_view;
3401
3402 MagickBooleanType
3403 status;
3404
3405 MagickOffsetType
3406 progress;
3407
3408 ssize_t
3409 y, offx, offy;
3410
3411 size_t
3412 changed,
3413 virt_width;
3414
3415 status=MagickTrue;
3416 changed=0;
3417 progress=0;
3418
3419 assert(image != (Image *) NULL);
3420 assert(image->signature == MagickCoreSignature);
3421 assert(kernel != (KernelInfo *) NULL);
3422 assert(kernel->signature == MagickCoreSignature);
3423 assert(exception != (ExceptionInfo *) NULL);
3424 assert(exception->signature == MagickCoreSignature);
3425
3426 /* Some methods (including convolve) needs use a reflected kernel.
3427 * Adjust 'origin' offsets to loop though kernel as a reflection.
3428 */
3429 offx = kernel->x;
3430 offy = kernel->y;
3431 switch(method) {
3432 case DistanceMorphology:
3433 case VoronoiMorphology:
3434 /* kernel needs to used with reflection about origin */
3435 offx = (ssize_t) kernel->width-offx-1;
3436 offy = (ssize_t) kernel->height-offy-1;
3437 break;
3438#if 0
3439 case ?????Morphology:
3440 /* kernel is used as is, without reflection */
3441 break;
3442#endif
3443 default:
3444 assert("Not a PrimativeDirect Morphology Method" != (char *) NULL);
3445 break;
3446 }
3447
3448 /* DO NOT THREAD THIS CODE! */
3449 /* two views into same image (virtual, and actual) */
3450 virt_view=AcquireVirtualCacheView(image,exception);
3451 auth_view=AcquireAuthenticCacheView(image,exception);
3452 virt_width=image->columns+kernel->width-1;
3453
3454 for (y=0; y < (ssize_t) image->rows; y++)
3455 {
3456 const PixelPacket
3457 *magick_restrict p;
3458
3459 const IndexPacket
3460 *magick_restrict p_indexes;
3461
3463 *magick_restrict q;
3464
3465 IndexPacket
3466 *magick_restrict q_indexes;
3467
3468 ssize_t
3469 x;
3470
3471 ssize_t
3472 r;
3473
3474 /* NOTE read virtual pixels, and authentic pixels, from the same image!
3475 ** we read using virtual to get virtual pixel handling, but write back
3476 ** into the same image.
3477 **
3478 ** Only top half of kernel is processed as we do a single pass downward
3479 ** through the image iterating the distance function as we go.
3480 */
3481 if (status == MagickFalse)
3482 break;
3483 p=GetCacheViewVirtualPixels(virt_view, -offx, y-offy, virt_width, (size_t) offy+1,
3484 exception);
3485 q=GetCacheViewAuthenticPixels(auth_view, 0, y, image->columns, 1,
3486 exception);
3487 if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
3488 status=MagickFalse;
3489 if (status == MagickFalse)
3490 break;
3491 p_indexes=GetCacheViewVirtualIndexQueue(virt_view);
3492 q_indexes=GetCacheViewAuthenticIndexQueue(auth_view);
3493
3494 /* offset to origin in 'p'. while 'q' points to it directly */
3495 r = (ssize_t) virt_width*offy + offx;
3496
3497 for (x=0; x < (ssize_t) image->columns; x++)
3498 {
3499 ssize_t
3500 v;
3501
3502 ssize_t
3503 u;
3504
3505 const double
3506 *magick_restrict k;
3507
3508 const PixelPacket
3509 *magick_restrict k_pixels;
3510
3511 const IndexPacket
3512 *magick_restrict k_indexes;
3513
3515 result;
3516
3517 /* Starting Defaults */
3518 GetMagickPixelPacket(image,&result);
3519 SetMagickPixelPacket(image,q,q_indexes,&result);
3520 if ( method != VoronoiMorphology )
3521 result.opacity = (MagickRealType) QuantumRange - (MagickRealType)
3522 result.opacity;
3523
3524 switch ( method ) {
3525 case DistanceMorphology:
3526 /* Add kernel Value and select the minimum value found. */
3527 k = &kernel->values[ kernel->width*kernel->height-1 ];
3528 k_pixels = p;
3529 k_indexes = p_indexes+x;
3530 for (v=0; v <= (ssize_t) offy; v++) {
3531 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
3532 if ( IsNaN(*k) ) continue;
3533 Minimize(result.red, (*k)+(double) k_pixels[u].red);
3534 Minimize(result.green, (*k)+(double) k_pixels[u].green);
3535 Minimize(result.blue, (*k)+(double) k_pixels[u].blue);
3536 Minimize(result.opacity, (*k)+(double) QuantumRange-(double)
3537 k_pixels[u].opacity);
3538 if ( image->colorspace == CMYKColorspace)
3539 Minimize(result.index, (*k)+(double)
3540 GetPixelIndex(k_indexes+u));
3541 }
3542 k_pixels += virt_width;
3543 k_indexes += virt_width;
3544 }
3545 /* repeat with the just processed pixels of this row */
3546 k = &kernel->values[ kernel->width*(kernel->y+1)-1 ];
3547 k_pixels = q-offx;
3548 k_indexes = q_indexes-offx;
3549 for (u=0; u < (ssize_t) offx; u++, k--) {
3550 if ( x+u-offx < 0 ) continue; /* off the edge! */
3551 if ( IsNaN(*k) ) continue;
3552 Minimize(result.red, (*k)+(double) k_pixels[u].red);
3553 Minimize(result.green, (*k)+(double) k_pixels[u].green);
3554 Minimize(result.blue, (*k)+(double) k_pixels[u].blue);
3555 Minimize(result.opacity, (*k)+(double) QuantumRange-(double)
3556 k_pixels[u].opacity);
3557 if ( image->colorspace == CMYKColorspace)
3558 Minimize(result.index, (*k)+(double)
3559 GetPixelIndex(k_indexes+u));
3560 }
3561 break;
3562 case VoronoiMorphology:
3563 /* Apply Distance to 'Matte' channel, while coping the color
3564 ** values of the closest pixel.
3565 **
3566 ** This is experimental, and realy the 'alpha' component should
3567 ** be completely separate 'masking' channel so that alpha can
3568 ** also be used as part of the results.
3569 */
3570 k = &kernel->values[ kernel->width*kernel->height-1 ];
3571 k_pixels = p;
3572 k_indexes = p_indexes+x;
3573 for (v=0; v <= (ssize_t) offy; v++) {
3574 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
3575 if ( IsNaN(*k) ) continue;
3576 if( result.opacity > (*k)+(double) k_pixels[u].opacity )
3577 {
3578 SetMagickPixelPacket(image,&k_pixels[u],&k_indexes[u],
3579 &result);
3580 result.opacity += *k;
3581 }
3582 }
3583 k_pixels += virt_width;
3584 k_indexes += virt_width;
3585 }
3586 /* repeat with the just processed pixels of this row */
3587 k = &kernel->values[ kernel->width*(kernel->y+1)-1 ];
3588 k_pixels = q-offx;
3589 k_indexes = q_indexes-offx;
3590 for (u=0; u < (ssize_t) offx; u++, k--) {
3591 if ( x+u-offx < 0 ) continue; /* off the edge! */
3592 if ( IsNaN(*k) ) continue;
3593 if( result.opacity > (*k)+(double) k_pixels[u].opacity )
3594 {
3595 SetMagickPixelPacket(image,&k_pixels[u],&k_indexes[u],
3596 &result);
3597 result.opacity += *k;
3598 }
3599 }
3600 break;
3601 default:
3602 /* result directly calculated or assigned */
3603 break;
3604 }
3605 /* Assign the resulting pixel values - Clamping Result */
3606 switch ( method ) {
3607 case VoronoiMorphology:
3608 SetPixelPacket(image,&result,q,q_indexes);
3609 break;
3610 default:
3611 if ((channel & RedChannel) != 0)
3612 SetPixelRed(q,ClampToQuantum(result.red));
3613 if ((channel & GreenChannel) != 0)
3614 SetPixelGreen(q,ClampToQuantum(result.green));
3615 if ((channel & BlueChannel) != 0)
3616 SetPixelBlue(q,ClampToQuantum(result.blue));
3617 if (((channel & OpacityChannel) != 0) && (image->matte != MagickFalse))
3618 SetPixelAlpha(q,ClampToQuantum(result.opacity));
3619 if (((channel & IndexChannel) != 0) &&
3620 (image->colorspace == CMYKColorspace))
3621 SetPixelIndex(q_indexes+x,ClampToQuantum(result.index));
3622 break;
3623 }
3624 /* Count up changed pixels */
3625 if ( ( p[r].red != GetPixelRed(q) )
3626 || ( p[r].green != GetPixelGreen(q) )
3627 || ( p[r].blue != GetPixelBlue(q) )
3628 || ( (image->matte != MagickFalse) &&
3629 (p[r].opacity != GetPixelOpacity(q)))
3630 || ( (image->colorspace == CMYKColorspace) &&
3631 (GetPixelIndex(p_indexes+x+r) != GetPixelIndex(q_indexes+x))) )
3632 changed++; /* The pixel was changed in some way! */
3633
3634 p++; /* increment pixel buffers */
3635 q++;
3636 } /* x */
3637
3638 if ( SyncCacheViewAuthenticPixels(auth_view,exception) == MagickFalse)
3639 status=MagickFalse;
3640 if (image->progress_monitor != (MagickProgressMonitor) NULL)
3641 {
3642#if defined(MAGICKCORE_OPENMP_SUPPORT)
3643 #pragma omp atomic
3644#endif
3645 progress++;
3646 if (SetImageProgress(image,MorphologyTag,progress,image->rows) == MagickFalse )
3647 status=MagickFalse;
3648 }
3649
3650 } /* y */
3651
3652 /* Do the reversed pass through the image */
3653 for (y=(ssize_t)image->rows-1; y >= 0; y--)
3654 {
3655 const PixelPacket
3656 *magick_restrict p;
3657
3658 const IndexPacket
3659 *magick_restrict p_indexes;
3660
3662 *magick_restrict q;
3663
3664 IndexPacket
3665 *magick_restrict q_indexes;
3666
3667 ssize_t
3668 x;
3669
3670 ssize_t
3671 r;
3672
3673 if (status == MagickFalse)
3674 break;
3675 /* NOTE read virtual pixels, and authentic pixels, from the same image!
3676 ** we read using virtual to get virtual pixel handling, but write back
3677 ** into the same image.
3678 **
3679 ** Only the bottom half of the kernel will be processes as we
3680 ** up the image.
3681 */
3682 p=GetCacheViewVirtualPixels(virt_view, -offx, y, virt_width, (size_t) kernel->y+1,
3683 exception);
3684 q=GetCacheViewAuthenticPixels(auth_view, 0, y, image->columns, 1,
3685 exception);
3686 if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
3687 status=MagickFalse;
3688 if (status == MagickFalse)
3689 break;
3690 p_indexes=GetCacheViewVirtualIndexQueue(virt_view);
3691 q_indexes=GetCacheViewAuthenticIndexQueue(auth_view);
3692
3693 /* adjust positions to end of row */
3694 p += image->columns-1;
3695 q += image->columns-1;
3696
3697 /* offset to origin in 'p'. while 'q' points to it directly */
3698 r = offx;
3699
3700 for (x=(ssize_t)image->columns-1; x >= 0; x--)
3701 {
3702 const double
3703 *magick_restrict k;
3704
3705 const PixelPacket
3706 *magick_restrict k_pixels;
3707
3708 const IndexPacket
3709 *magick_restrict k_indexes;
3710
3712 result;
3713
3714 ssize_t
3715 u,
3716 v;
3717
3718 /* Default - previously modified pixel */
3719 GetMagickPixelPacket(image,&result);
3720 SetMagickPixelPacket(image,q,q_indexes,&result);
3721 if ( method != VoronoiMorphology )
3722 result.opacity = (double) QuantumRange - (double) result.opacity;
3723
3724 switch ( method ) {
3725 case DistanceMorphology:
3726 /* Add kernel Value and select the minimum value found. */
3727 k = &kernel->values[ kernel->width*(kernel->y+1)-1 ];
3728 k_pixels = p;
3729 k_indexes = p_indexes+x;
3730 for (v=offy; v < (ssize_t) kernel->height; v++) {
3731 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
3732 if ( IsNaN(*k) ) continue;
3733 Minimize(result.red, (*k)+(double) k_pixels[u].red);
3734 Minimize(result.green, (*k)+(double) k_pixels[u].green);
3735 Minimize(result.blue, (*k)+(double) k_pixels[u].blue);
3736 Minimize(result.opacity, (*k)+(double) QuantumRange-(double)
3737 k_pixels[u].opacity);
3738 if ( image->colorspace == CMYKColorspace)
3739 Minimize(result.index,(*k)+(double)
3740 GetPixelIndex(k_indexes+u));
3741 }
3742 k_pixels += virt_width;
3743 k_indexes += virt_width;
3744 }
3745 /* repeat with the just processed pixels of this row */
3746 k = &kernel->values[ kernel->width*(kernel->y)+kernel->x-1 ];
3747 k_pixels = q-offx;
3748 k_indexes = q_indexes-offx;
3749 for (u=offx+1; u < (ssize_t) kernel->width; u++, k--) {
3750 if ( (x+u-offx) >= (ssize_t)image->columns ) continue;
3751 if ( IsNaN(*k) ) continue;
3752 Minimize(result.red, (*k)+(double) k_pixels[u].red);
3753 Minimize(result.green, (*k)+(double) k_pixels[u].green);
3754 Minimize(result.blue, (*k)+(double) k_pixels[u].blue);
3755 Minimize(result.opacity, (*k)+(double) QuantumRange-(double)
3756 k_pixels[u].opacity);
3757 if ( image->colorspace == CMYKColorspace)
3758 Minimize(result.index, (*k)+(double)
3759 GetPixelIndex(k_indexes+u));
3760 }
3761 break;
3762 case VoronoiMorphology:
3763 /* Apply Distance to 'Matte' channel, coping the closest color.
3764 **
3765 ** This is experimental, and realy the 'alpha' component should
3766 ** be completely separate 'masking' channel.
3767 */
3768 k = &kernel->values[ kernel->width*(kernel->y+1)-1 ];
3769 k_pixels = p;
3770 k_indexes = p_indexes+x;
3771 for (v=offy; v < (ssize_t) kernel->height; v++) {
3772 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
3773 if ( IsNaN(*k) ) continue;
3774 if( result.opacity > (*k)+(double) k_pixels[u].opacity )
3775 {
3776 SetMagickPixelPacket(image,&k_pixels[u],&k_indexes[u],
3777 &result);
3778 result.opacity += *k;
3779 }
3780 }
3781 k_pixels += virt_width;
3782 k_indexes += virt_width;
3783 }
3784 /* repeat with the just processed pixels of this row */
3785 k = &kernel->values[ kernel->width*(kernel->y)+kernel->x-1 ];
3786 k_pixels = q-offx;
3787 k_indexes = q_indexes-offx;
3788 for (u=offx+1; u < (ssize_t) kernel->width; u++, k--) {
3789 if ( (x+u-offx) >= (ssize_t)image->columns ) continue;
3790 if ( IsNaN(*k) ) continue;
3791 if( result.opacity > (*k)+(double) k_pixels[u].opacity )
3792 {
3793 SetMagickPixelPacket(image,&k_pixels[u],&k_indexes[u],
3794 &result);
3795 result.opacity += *k;
3796 }
3797 }
3798 break;
3799 default:
3800 /* result directly calculated or assigned */
3801 break;
3802 }
3803 /* Assign the resulting pixel values - Clamping Result */
3804 switch ( method ) {
3805 case VoronoiMorphology:
3806 SetPixelPacket(image,&result,q,q_indexes);
3807 break;
3808 default:
3809 if ((channel & RedChannel) != 0)
3810 SetPixelRed(q,ClampToQuantum(result.red));
3811 if ((channel & GreenChannel) != 0)
3812 SetPixelGreen(q,ClampToQuantum(result.green));
3813 if ((channel & BlueChannel) != 0)
3814 SetPixelBlue(q,ClampToQuantum(result.blue));
3815 if (((channel & OpacityChannel) != 0) && (image->matte != MagickFalse))
3816 SetPixelAlpha(q,ClampToQuantum(result.opacity));
3817 if (((channel & IndexChannel) != 0) &&
3818 (image->colorspace == CMYKColorspace))
3819 SetPixelIndex(q_indexes+x,ClampToQuantum(result.index));
3820 break;
3821 }
3822 /* Count up changed pixels */
3823 if ( ( p[r].red != GetPixelRed(q) )
3824 || ( p[r].green != GetPixelGreen(q) )
3825 || ( p[r].blue != GetPixelBlue(q) )
3826 || ( (image->matte != MagickFalse) &&
3827 (p[r].opacity != GetPixelOpacity(q)))
3828 || ( (image->colorspace == CMYKColorspace) &&
3829 (GetPixelIndex(p_indexes+x+r) != GetPixelIndex(q_indexes+x))) )
3830 changed++; /* The pixel was changed in some way! */
3831
3832 p--; /* go backward through pixel buffers */
3833 q--;
3834 } /* x */
3835 if ( SyncCacheViewAuthenticPixels(auth_view,exception) == MagickFalse)
3836 status=MagickFalse;
3837 if (image->progress_monitor != (MagickProgressMonitor) NULL)
3838 {
3839#if defined(MAGICKCORE_OPENMP_SUPPORT)
3840 #pragma omp atomic
3841#endif
3842 progress++;
3843 if ( SetImageProgress(image,MorphologyTag,progress,image->rows) == MagickFalse )
3844 status=MagickFalse;
3845 }
3846
3847 } /* y */
3848
3849 auth_view=DestroyCacheView(auth_view);
3850 virt_view=DestroyCacheView(virt_view);
3851 return(status ? (ssize_t) changed : -1);
3852}
3853
3854/* Apply a Morphology by calling one of the above low level primitive
3855** application functions. This function handles any iteration loops,
3856** composition or re-iteration of results, and compound morphology methods
3857** that is based on multiple low-level (staged) morphology methods.
3858**
3859** Basically this provides the complex grue between the requested morphology
3860** method and raw low-level implementation (above).
3861*/
3862MagickExport Image *MorphologyApply(const Image *image, const ChannelType
3863 channel,const MorphologyMethod method, const ssize_t iterations,
3864 const KernelInfo *kernel, const CompositeOperator compose,
3865 const double bias, ExceptionInfo *exception)
3866{
3867 CompositeOperator
3868 curr_compose;
3869
3870 Image
3871 *curr_image, /* Image we are working with or iterating */
3872 *work_image, /* secondary image for primitive iteration */
3873 *save_image, /* saved image - for 'edge' method only */
3874 *rslt_image; /* resultant image - after multi-kernel handling */
3875
3877 *reflected_kernel, /* A reflected copy of the kernel (if needed) */
3878 *norm_kernel, /* the current normal un-reflected kernel */
3879 *rflt_kernel, /* the current reflected kernel (if needed) */
3880 *this_kernel; /* the kernel being applied */
3881
3882 MorphologyMethod
3883 primitive; /* the current morphology primitive being applied */
3884
3885 CompositeOperator
3886 rslt_compose; /* multi-kernel compose method for results to use */
3887
3888 MagickBooleanType
3889 special, /* do we use a direct modify function? */
3890 verbose; /* verbose output of results */
3891
3892 size_t
3893 method_loop, /* Loop 1: number of compound method iterations (norm 1) */
3894 method_limit, /* maximum number of compound method iterations */
3895 kernel_number, /* Loop 2: the kernel number being applied */
3896 stage_loop, /* Loop 3: primitive loop for compound morphology */
3897 stage_limit, /* how many primitives are in this compound */
3898 kernel_loop, /* Loop 4: iterate the kernel over image */
3899 kernel_limit, /* number of times to iterate kernel */
3900 count, /* total count of primitive steps applied */
3901 kernel_changed, /* total count of changed using iterated kernel */
3902 method_changed; /* total count of changed over method iteration */
3903
3904 ssize_t
3905 changed; /* number pixels changed by last primitive operation */
3906
3907 char
3908 v_info[MaxTextExtent];
3909
3910 assert(image != (Image *) NULL);
3911 assert(image->signature == MagickCoreSignature);
3912 assert(kernel != (KernelInfo *) NULL);
3913 assert(kernel->signature == MagickCoreSignature);
3914 assert(exception != (ExceptionInfo *) NULL);
3915 assert(exception->signature == MagickCoreSignature);
3916
3917 count = 0; /* number of low-level morphology primitives performed */
3918 if ( iterations == 0 )
3919 return((Image *) NULL); /* null operation - nothing to do! */
3920
3921 kernel_limit = (size_t) iterations;
3922 if ( iterations < 0 ) /* negative interactions = infinite (well almost) */
3923 kernel_limit = image->columns>image->rows ? image->columns : image->rows;
3924
3925 verbose = IsMagickTrue(GetImageArtifact(image,"debug"));
3926
3927 /* initialise for cleanup */
3928 curr_image = (Image *) image;
3929 curr_compose = image->compose;
3930 (void) curr_compose;
3931 work_image = save_image = rslt_image = (Image *) NULL;
3932 reflected_kernel = (KernelInfo *) NULL;
3933
3934 /* Initialize specific methods
3935 * + which loop should use the given iterations
3936 * + how many primitives make up the compound morphology
3937 * + multi-kernel compose method to use (by default)
3938 */
3939 method_limit = 1; /* just do method once, unless otherwise set */
3940 stage_limit = 1; /* assume method is not a compound */
3941 special = MagickFalse; /* assume it is NOT a direct modify primitive */
3942 rslt_compose = compose; /* and we are composing multi-kernels as given */
3943 switch( method ) {
3944 case SmoothMorphology: /* 4 primitive compound morphology */
3945 stage_limit = 4;
3946 break;
3947 case OpenMorphology: /* 2 primitive compound morphology */
3948 case OpenIntensityMorphology:
3949 case TopHatMorphology:
3950 case CloseMorphology:
3951 case CloseIntensityMorphology:
3952 case BottomHatMorphology:
3953 case EdgeMorphology:
3954 stage_limit = 2;
3955 break;
3956 case HitAndMissMorphology:
3957 rslt_compose = LightenCompositeOp; /* Union of multi-kernel results */
3958 magick_fallthrough;
3959 case ThinningMorphology:
3960 case ThickenMorphology:
3961 method_limit = kernel_limit; /* iterate the whole method */
3962 kernel_limit = 1; /* do not do kernel iteration */
3963 break;
3964 case DistanceMorphology:
3965 case VoronoiMorphology:
3966 special = MagickTrue; /* use special direct primitive */
3967 break;
3968 default:
3969 break;
3970 }
3971
3972 /* Apply special methods with special requirements
3973 ** For example, single run only, or post-processing requirements
3974 */
3975 if ( special != MagickFalse )
3976 {
3977 rslt_image=CloneImage(image,0,0,MagickTrue,exception);
3978 if (rslt_image == (Image *) NULL)
3979 goto error_cleanup;
3980 if (SetImageStorageClass(rslt_image,DirectClass) == MagickFalse)
3981 {
3982 InheritException(exception,&rslt_image->exception);
3983 goto error_cleanup;
3984 }
3985
3986 changed = MorphologyPrimitiveDirect(rslt_image, method,
3987 channel, kernel, exception);
3988
3989 if ( verbose != MagickFalse )
3990 (void) (void) FormatLocaleFile(stderr,
3991 "%s:%.20g.%.20g #%.20g => Changed %.20g\n",
3992 CommandOptionToMnemonic(MagickMorphologyOptions, method),
3993 1.0,0.0,1.0, (double) changed);
3994
3995 if ( changed < 0 )
3996 goto error_cleanup;
3997
3998 if ( method == VoronoiMorphology ) {
3999 /* Preserve the alpha channel of input image - but turned off */
4000 (void) SetImageAlphaChannel(rslt_image, DeactivateAlphaChannel);
4001 (void) CompositeImageChannel(rslt_image, DefaultChannels,
4002 CopyOpacityCompositeOp, image, 0, 0);
4003 (void) SetImageAlphaChannel(rslt_image, DeactivateAlphaChannel);
4004 }
4005 goto exit_cleanup;
4006 }
4007
4008 /* Handle user (caller) specified multi-kernel composition method */
4009 if ( compose != UndefinedCompositeOp )
4010 rslt_compose = compose; /* override default composition for method */
4011 if ( rslt_compose == UndefinedCompositeOp )
4012 rslt_compose = NoCompositeOp; /* still not defined! Then re-iterate */
4013
4014 /* Some methods require a reflected kernel to use with primitives.
4015 * Create the reflected kernel for those methods. */
4016 switch ( method ) {
4017 case CorrelateMorphology:
4018 case CloseMorphology:
4019 case CloseIntensityMorphology:
4020 case BottomHatMorphology:
4021 case SmoothMorphology:
4022 reflected_kernel = CloneKernelInfo(kernel);
4023 if (reflected_kernel == (KernelInfo *) NULL)
4024 goto error_cleanup;
4025 RotateKernelInfo(reflected_kernel,180);
4026 break;
4027 default:
4028 break;
4029 }
4030
4031 /* Loops around more primitive morphology methods
4032 ** erose, dilate, open, close, smooth, edge, etc...
4033 */
4034 /* Loop 1: iterate the compound method */
4035 method_loop = 0;
4036 method_changed = 1;
4037 while ( method_loop < method_limit && method_changed > 0 ) {
4038 method_loop++;
4039 method_changed = 0;
4040
4041 /* Loop 2: iterate over each kernel in a multi-kernel list */
4042 norm_kernel = (KernelInfo *) kernel;
4043 this_kernel = (KernelInfo *) kernel;
4044 rflt_kernel = reflected_kernel;
4045
4046 kernel_number = 0;
4047 while ( norm_kernel != NULL ) {
4048
4049 /* Loop 3: Compound Morphology Staging - Select Primitive to apply */
4050 stage_loop = 0; /* the compound morphology stage number */
4051 while ( stage_loop < stage_limit ) {
4052 stage_loop++; /* The stage of the compound morphology */
4053
4054 /* Select primitive morphology for this stage of compound method */
4055 this_kernel = norm_kernel; /* default use unreflected kernel */
4056 primitive = method; /* Assume method is a primitive */
4057 switch( method ) {
4058 case ErodeMorphology: /* just erode */
4059 case EdgeInMorphology: /* erode and image difference */
4060 primitive = ErodeMorphology;
4061 break;
4062 case DilateMorphology: /* just dilate */
4063 case EdgeOutMorphology: /* dilate and image difference */
4064 primitive = DilateMorphology;
4065 break;
4066 case OpenMorphology: /* erode then dilate */
4067 case TopHatMorphology: /* open and image difference */
4068 primitive = ErodeMorphology;
4069 if ( stage_loop == 2 )
4070 primitive = DilateMorphology;
4071 break;
4072 case OpenIntensityMorphology:
4073 primitive = ErodeIntensityMorphology;
4074 if ( stage_loop == 2 )
4075 primitive = DilateIntensityMorphology;
4076 break;
4077 case CloseMorphology: /* dilate, then erode */
4078 case BottomHatMorphology: /* close and image difference */
4079 this_kernel = rflt_kernel; /* use the reflected kernel */
4080 primitive = DilateMorphology;
4081 if ( stage_loop == 2 )
4082 primitive = ErodeMorphology;
4083 break;
4084 case CloseIntensityMorphology:
4085 this_kernel = rflt_kernel; /* use the reflected kernel */
4086 primitive = DilateIntensityMorphology;
4087 if ( stage_loop == 2 )
4088 primitive = ErodeIntensityMorphology;
4089 break;
4090 case SmoothMorphology: /* open, close */
4091 switch ( stage_loop ) {
4092 case 1: /* start an open method, which starts with Erode */
4093 primitive = ErodeMorphology;
4094 break;
4095 case 2: /* now Dilate the Erode */
4096 primitive = DilateMorphology;
4097 break;
4098 case 3: /* Reflect kernel a close */
4099 this_kernel = rflt_kernel; /* use the reflected kernel */
4100 primitive = DilateMorphology;
4101 break;
4102 case 4: /* Finish the Close */
4103 this_kernel = rflt_kernel; /* use the reflected kernel */
4104 primitive = ErodeMorphology;
4105 break;
4106 }
4107 break;
4108 case EdgeMorphology: /* dilate and erode difference */
4109 primitive = DilateMorphology;
4110 if ( stage_loop == 2 ) {
4111 save_image = curr_image; /* save the image difference */
4112 curr_image = (Image *) image;
4113 primitive = ErodeMorphology;
4114 }
4115 break;
4116 case CorrelateMorphology:
4117 /* A Correlation is a Convolution with a reflected kernel.
4118 ** However a Convolution is a weighted sum using a reflected
4119 ** kernel. It may seem strange to convert a Correlation into a
4120 ** Convolution as the Correlation is the simpler method, but
4121 ** Convolution is much more commonly used, and it makes sense to
4122 ** implement it directly so as to avoid the need to duplicate the
4123 ** kernel when it is not required (which is typically the
4124 ** default).
4125 */
4126 this_kernel = rflt_kernel; /* use the reflected kernel */
4127 primitive = ConvolveMorphology;
4128 break;
4129 default:
4130 break;
4131 }
4132 assert( this_kernel != (KernelInfo *) NULL );
4133
4134 /* Extra information for debugging compound operations */
4135 if ( verbose != MagickFalse ) {
4136 if ( stage_limit > 1 )
4137 (void) FormatLocaleString(v_info,MaxTextExtent,"%s:%.20g.%.20g -> ",
4138 CommandOptionToMnemonic(MagickMorphologyOptions,method),(double)
4139 method_loop,(double) stage_loop);
4140 else if ( primitive != method )
4141 (void) FormatLocaleString(v_info, MaxTextExtent, "%s:%.20g -> ",
4142 CommandOptionToMnemonic(MagickMorphologyOptions, method),(double)
4143 method_loop);
4144 else
4145 v_info[0] = '\0';
4146 }
4147
4148 /* Loop 4: Iterate the kernel with primitive */
4149 kernel_loop = 0;
4150 kernel_changed = 0;
4151 changed = 1;
4152 while ( kernel_loop < kernel_limit && changed > 0 ) {
4153 kernel_loop++; /* the iteration of this kernel */
4154
4155 /* Create a clone as the destination image, if not yet defined */
4156 if ( work_image == (Image *) NULL )
4157 {
4158 work_image=CloneImage(image,0,0,MagickTrue,exception);
4159 if (work_image == (Image *) NULL)
4160 goto error_cleanup;
4161 if (SetImageStorageClass(work_image,DirectClass) == MagickFalse)
4162 {
4163 InheritException(exception,&work_image->exception);
4164 goto error_cleanup;
4165 }
4166 /* work_image->type=image->type; ??? */
4167 }
4168
4169 /* APPLY THE MORPHOLOGICAL PRIMITIVE (curr -> work) */
4170 count++;
4171 changed = MorphologyPrimitive(curr_image, work_image, primitive,
4172 channel, this_kernel, bias, exception);
4173
4174 if ( verbose != MagickFalse ) {
4175 if ( kernel_loop > 1 )
4176 (void) FormatLocaleFile(stderr, "\n"); /* add end-of-line from previous */
4177 (void) (void) FormatLocaleFile(stderr,
4178 "%s%s%s:%.20g.%.20g #%.20g => Changed %.20g",
4179 v_info,CommandOptionToMnemonic(MagickMorphologyOptions,
4180 primitive),(this_kernel == rflt_kernel ) ? "*" : "",
4181 (double) (method_loop+kernel_loop-1),(double) kernel_number,
4182 (double) count,(double) changed);
4183 }
4184 if ( changed < 0 )
4185 goto error_cleanup;
4186 kernel_changed += changed;
4187 method_changed += changed;
4188
4189 /* prepare next loop */
4190 { Image *tmp = work_image; /* swap images for iteration */
4191 work_image = curr_image;
4192 curr_image = tmp;
4193 }
4194 if ( work_image == image )
4195 work_image = (Image *) NULL; /* replace input 'image' */
4196
4197 } /* End Loop 4: Iterate the kernel with primitive */
4198
4199 if ( verbose != MagickFalse && kernel_changed != (size_t)changed )
4200 (void) FormatLocaleFile(stderr, " Total %.20g",(double) kernel_changed);
4201 if ( verbose != MagickFalse && stage_loop < stage_limit )
4202 (void) FormatLocaleFile(stderr, "\n"); /* add end-of-line before looping */
4203
4204#if 0
4205 (void) FormatLocaleFile(stderr, "--E-- image=0x%lx\n", (unsigned long)image);
4206 (void) FormatLocaleFile(stderr, " curr =0x%lx\n", (unsigned long)curr_image);
4207 (void) FormatLocaleFile(stderr, " work =0x%lx\n", (unsigned long)work_image);
4208 (void) FormatLocaleFile(stderr, " save =0x%lx\n", (unsigned long)save_image);
4209 (void) FormatLocaleFile(stderr, " union=0x%lx\n", (unsigned long)rslt_image);
4210#endif
4211
4212 } /* End Loop 3: Primitive (staging) Loop for Compound Methods */
4213
4214 /* Final Post-processing for some Compound Methods
4215 **
4216 ** The removal of any 'Sync' channel flag in the Image Composition
4217 ** below ensures the mathematical compose method is applied in a
4218 ** purely mathematical way, and only to the selected channels.
4219 ** Turn off SVG composition 'alpha blending'.
4220 */
4221 switch( method ) {
4222 case EdgeOutMorphology:
4223 case EdgeInMorphology:
4224 case TopHatMorphology:
4225 case BottomHatMorphology:
4226 if ( verbose != MagickFalse )
4227 (void) FormatLocaleFile(stderr,
4228 "\n%s: Difference with original image",
4229 CommandOptionToMnemonic(MagickMorphologyOptions,method));
4230 (void) CompositeImageChannel(curr_image,(ChannelType)
4231 (channel & ~SyncChannels),DifferenceCompositeOp,image,0,0);
4232 break;
4233 case EdgeMorphology:
4234 if ( verbose != MagickFalse )
4235 (void) FormatLocaleFile(stderr,
4236 "\n%s: Difference of Dilate and Erode",
4237 CommandOptionToMnemonic(MagickMorphologyOptions,method));
4238 (void) CompositeImageChannel(curr_image,(ChannelType)
4239 (channel & ~SyncChannels),DifferenceCompositeOp,save_image,0,0);
4240 save_image = DestroyImage(save_image); /* finished with save image */
4241 break;
4242 default:
4243 break;
4244 }
4245
4246 /* multi-kernel handling: re-iterate, or compose results */
4247 if ( kernel->next == (KernelInfo *) NULL )
4248 rslt_image = curr_image; /* just return the resulting image */
4249 else if ( rslt_compose == NoCompositeOp )
4250 { if ( verbose != MagickFalse ) {
4251 if ( this_kernel->next != (KernelInfo *) NULL )
4252 (void) FormatLocaleFile(stderr, " (re-iterate)");
4253 else
4254 (void) FormatLocaleFile(stderr, " (done)");
4255 }
4256 rslt_image = curr_image; /* return result, and re-iterate */
4257 }
4258 else if ( rslt_image == (Image *) NULL)
4259 { if ( verbose != MagickFalse )
4260 (void) FormatLocaleFile(stderr, " (save for compose)");
4261 rslt_image = curr_image;
4262 curr_image = (Image *) image; /* continue with original image */
4263 }
4264 else
4265 { /* Add the new 'current' result to the composition
4266 **
4267 ** The removal of any 'Sync' channel flag in the Image Composition
4268 ** below ensures the mathematical compose method is applied in a
4269 ** purely mathematical way, and only to the selected channels.
4270 ** IE: Turn off SVG composition 'alpha blending'.
4271 */
4272 if ( verbose != MagickFalse )
4273 (void) FormatLocaleFile(stderr, " (compose \"%s\")",
4274 CommandOptionToMnemonic(MagickComposeOptions, rslt_compose) );
4275 (void) CompositeImageChannel(rslt_image,
4276 (ChannelType) (channel & ~SyncChannels), rslt_compose,
4277 curr_image, 0, 0);
4278 curr_image = DestroyImage(curr_image);
4279 curr_image = (Image *) image; /* continue with original image */
4280 }
4281 if ( verbose != MagickFalse )
4282 (void) FormatLocaleFile(stderr, "\n");
4283
4284 /* loop to the next kernel in a multi-kernel list */
4285 norm_kernel = norm_kernel->next;
4286 if ( rflt_kernel != (KernelInfo *) NULL )
4287 rflt_kernel = rflt_kernel->next;
4288 kernel_number++;
4289 } /* End Loop 2: Loop over each kernel */
4290
4291 } /* End Loop 1: compound method interaction */
4292
4293 goto exit_cleanup;
4294
4295 /* Yes goto's are bad, but it makes cleanup lot more efficient */
4296error_cleanup:
4297 if ( curr_image == rslt_image )
4298 curr_image = (Image *) NULL;
4299 if ( rslt_image != (Image *) NULL )
4300 rslt_image = DestroyImage(rslt_image);
4301exit_cleanup:
4302 if ( curr_image == rslt_image || curr_image == image )
4303 curr_image = (Image *) NULL;
4304 if ( curr_image != (Image *) NULL )
4305 curr_image = DestroyImage(curr_image);
4306 if ( work_image != (Image *) NULL )
4307 work_image = DestroyImage(work_image);
4308 if ( save_image != (Image *) NULL )
4309 save_image = DestroyImage(save_image);
4310 if ( reflected_kernel != (KernelInfo *) NULL )
4311 reflected_kernel = DestroyKernelInfo(reflected_kernel);
4312 return(rslt_image);
4313}
4314
4315
4316
4317/*
4318%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4319% %
4320% %
4321% %
4322% M o r p h o l o g y I m a g e C h a n n e l %
4323% %
4324% %
4325% %
4326%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4327%
4328% MorphologyImageChannel() applies a user supplied kernel to the image
4329% according to the given mophology method.
4330%
4331% This function applies any and all user defined settings before calling
4332% the above internal function MorphologyApply().
4333%
4334% User defined settings include...
4335% * Output Bias for Convolution and correlation ("-bias"
4336 or "-define convolve:bias=??")
4337% * Kernel Scale/normalize settings ("-set 'option:convolve:scale'")
4338% This can also includes the addition of a scaled unity kernel.
4339% * Show Kernel being applied ("-set option:showKernel 1")
4340%
4341% The format of the MorphologyImage method is:
4342%
4343% Image *MorphologyImage(const Image *image,MorphologyMethod method,
4344% const ssize_t iterations,KernelInfo *kernel,ExceptionInfo *exception)
4345%
4346% Image *MorphologyImageChannel(const Image *image, const ChannelType
4347% channel,MorphologyMethod method,const ssize_t iterations,
4348% KernelInfo *kernel,ExceptionInfo *exception)
4349%
4350% A description of each parameter follows:
4351%
4352% o image: the image.
4353%
4354% o method: the morphology method to be applied.
4355%
4356% o iterations: apply the operation this many times (or no change).
4357% A value of -1 means loop until no change found.
4358% How this is applied may depend on the morphology method.
4359% Typically this is a value of 1.
4360%
4361% o channel: the channel type.
4362%
4363% o kernel: An array of double representing the morphology kernel.
4364% Warning: kernel may be normalized for the Convolve method.
4365%
4366% o exception: return any errors or warnings in this structure.
4367%
4368*/
4369
4370MagickExport Image *MorphologyImage(const Image *image,
4371 const MorphologyMethod method,const ssize_t iterations,
4372 const KernelInfo *kernel,ExceptionInfo *exception)
4373{
4374 Image
4375 *morphology_image;
4376
4377 morphology_image=MorphologyImageChannel(image,DefaultChannels,method,
4378 iterations,kernel,exception);
4379 return(morphology_image);
4380}
4381
4382MagickExport Image *MorphologyImageChannel(const Image *image,
4383 const ChannelType channel,const MorphologyMethod method,
4384 const ssize_t iterations,const KernelInfo *kernel,ExceptionInfo *exception)
4385{
4387 *curr_kernel;
4388
4389 CompositeOperator
4390 compose;
4391
4392 double
4393 bias;
4394
4395 Image
4396 *morphology_image;
4397
4398 /* Apply Convolve/Correlate Normalization and Scaling Factors.
4399 * This is done BEFORE the ShowKernelInfo() function is called so that
4400 * users can see the results of the 'option:convolve:scale' option.
4401 */
4402 assert(image != (const Image *) NULL);
4403 assert(image->signature == MagickCoreSignature);
4404 assert(exception != (ExceptionInfo *) NULL);
4405 assert(exception->signature == MagickCoreSignature);
4406 if (IsEventLogging() != MagickFalse)
4407 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
4408 curr_kernel = (KernelInfo *) kernel;
4409 bias=image->bias;
4410 if ((method == ConvolveMorphology) || (method == CorrelateMorphology))
4411 {
4412 const char
4413 *artifact;
4414
4415 artifact = GetImageArtifact(image,"convolve:bias");
4416 if (artifact != (const char *) NULL)
4417 bias=StringToDoubleInterval(artifact,(double) QuantumRange+1.0);
4418
4419 artifact = GetImageArtifact(image,"convolve:scale");
4420 if ( artifact != (const char *) NULL ) {
4421 if ( curr_kernel == kernel )
4422 curr_kernel = CloneKernelInfo(kernel);
4423 if (curr_kernel == (KernelInfo *) NULL) {
4424 curr_kernel=DestroyKernelInfo(curr_kernel);
4425 return((Image *) NULL);
4426 }
4427 ScaleGeometryKernelInfo(curr_kernel, artifact);
4428 }
4429 }
4430
4431 /* display the (normalized) kernel via stderr */
4432 if ( IsMagickTrue(GetImageArtifact(image,"showKernel"))
4433 || IsMagickTrue(GetImageArtifact(image,"convolve:showKernel"))
4434 || IsMagickTrue(GetImageArtifact(image,"morphology:showKernel")) )
4435 ShowKernelInfo(curr_kernel);
4436
4437 /* Override the default handling of multi-kernel morphology results
4438 * If 'Undefined' use the default method
4439 * If 'None' (default for 'Convolve') re-iterate previous result
4440 * Otherwise merge resulting images using compose method given.
4441 * Default for 'HitAndMiss' is 'Lighten'.
4442 */
4443 { const char
4444 *artifact;
4445 compose = UndefinedCompositeOp; /* use default for method */
4446 artifact = GetImageArtifact(image,"morphology:compose");
4447 if ( artifact != (const char *) NULL)
4448 compose = (CompositeOperator) ParseCommandOption(
4449 MagickComposeOptions,MagickFalse,artifact);
4450 }
4451 /* Apply the Morphology */
4452 morphology_image = MorphologyApply(image, channel, method, iterations,
4453 curr_kernel, compose, bias, exception);
4454
4455 /* Cleanup and Exit */
4456 if ( curr_kernel != kernel )
4457 curr_kernel=DestroyKernelInfo(curr_kernel);
4458 return(morphology_image);
4459}
4460
4461/*
4462%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4463% %
4464% %
4465% %
4466+ R o t a t e K e r n e l I n f o %
4467% %
4468% %
4469% %
4470%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4471%
4472% RotateKernelInfo() rotates the kernel by the angle given.
4473%
4474% Currently it is restricted to 90 degree angles, of either 1D kernels
4475% or square kernels. And 'circular' rotations of 45 degrees for 3x3 kernels.
4476% It will ignore useless rotations for specific 'named' built-in kernels.
4477%
4478% The format of the RotateKernelInfo method is:
4479%
4480% void RotateKernelInfo(KernelInfo *kernel, double angle)
4481%
4482% A description of each parameter follows:
4483%
4484% o kernel: the Morphology/Convolution kernel
4485%
4486% o angle: angle to rotate in degrees
4487%
4488% This function is currently internal to this module only, but can be exported
4489% to other modules if needed.
4490*/
4491static void RotateKernelInfo(KernelInfo *kernel, double angle)
4492{
4493 /* angle the lower kernels first */
4494 if ( kernel->next != (KernelInfo *) NULL)
4495 RotateKernelInfo(kernel->next, angle);
4496
4497 /* WARNING: Currently assumes the kernel (rightly) is horizontally symmetrical
4498 **
4499 ** TODO: expand beyond simple 90 degree rotates, flips and flops
4500 */
4501
4502 /* Modulus the angle */
4503 angle = fmod(angle, 360.0);
4504 if ( angle < 0 )
4505 angle += 360.0;
4506
4507 if ( 337.5 < angle || angle <= 22.5 )
4508 return; /* Near zero angle - no change! - At least not at this time */
4509
4510 /* Handle special cases */
4511 switch (kernel->type) {
4512 /* These built-in kernels are cylindrical kernels, rotating is useless */
4513 case GaussianKernel:
4514 case DoGKernel:
4515 case LoGKernel:
4516 case DiskKernel:
4517 case PeaksKernel:
4518 case LaplacianKernel:
4519 case ChebyshevKernel:
4520 case ManhattanKernel:
4521 case EuclideanKernel:
4522 return;
4523
4524 /* These may be rotatable at non-90 angles in the future */
4525 /* but simply rotating them in multiples of 90 degrees is useless */
4526 case SquareKernel:
4527 case DiamondKernel:
4528 case PlusKernel:
4529 case CrossKernel:
4530 return;
4531
4532 /* These only allows a +/-90 degree rotation (by transpose) */
4533 /* A 180 degree rotation is useless */
4534 case BlurKernel:
4535 if ( 135.0 < angle && angle <= 225.0 )
4536 return;
4537 if ( 225.0 < angle && angle <= 315.0 )
4538 angle -= 180;
4539 break;
4540
4541 default:
4542 break;
4543 }
4544 /* Attempt rotations by 45 degrees -- 3x3 kernels only */
4545 if ( 22.5 < fmod(angle,90.0) && fmod(angle,90.0) <= 67.5 )
4546 {
4547 if ( kernel->width == 3 && kernel->height == 3 )
4548 { /* Rotate a 3x3 square by 45 degree angle */
4549 double t = kernel->values[0];
4550 kernel->values[0] = kernel->values[3];
4551 kernel->values[3] = kernel->values[6];
4552 kernel->values[6] = kernel->values[7];
4553 kernel->values[7] = kernel->values[8];
4554 kernel->values[8] = kernel->values[5];
4555 kernel->values[5] = kernel->values[2];
4556 kernel->values[2] = kernel->values[1];
4557 kernel->values[1] = t;
4558 /* rotate non-centered origin */
4559 if ( kernel->x != 1 || kernel->y != 1 ) {
4560 ssize_t x,y;
4561 x = (ssize_t) kernel->x-1;
4562 y = (ssize_t) kernel->y-1;
4563 if ( x == y ) x = 0;
4564 else if ( x == 0 ) x = -y;
4565 else if ( x == -y ) y = 0;
4566 else if ( y == 0 ) y = x;
4567 kernel->x = (ssize_t) x+1;
4568 kernel->y = (ssize_t) y+1;
4569 }
4570 angle = fmod(angle+315.0, 360.0); /* angle reduced 45 degrees */
4571 kernel->angle = fmod(kernel->angle+45.0, 360.0);
4572 }
4573 else
4574 perror("Unable to rotate non-3x3 kernel by 45 degrees");
4575 }
4576 if ( 45.0 < fmod(angle, 180.0) && fmod(angle,180.0) <= 135.0 )
4577 {
4578 if ( kernel->width == 1 || kernel->height == 1 )
4579 { /* Do a transpose of a 1 dimensional kernel,
4580 ** which results in a fast 90 degree rotation of some type.
4581 */
4582 ssize_t
4583 t;
4584 t = (ssize_t) kernel->width;
4585 kernel->width = kernel->height;
4586 kernel->height = (size_t) t;
4587 t = kernel->x;
4588 kernel->x = kernel->y;
4589 kernel->y = t;
4590 if ( kernel->width == 1 ) {
4591 angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */
4592 kernel->angle = fmod(kernel->angle+90.0, 360.0);
4593 } else {
4594 angle = fmod(angle+90.0, 360.0); /* angle increased 90 degrees */
4595 kernel->angle = fmod(kernel->angle+270.0, 360.0);
4596 }
4597 }
4598 else if ( kernel->width == kernel->height )
4599 { /* Rotate a square array of values by 90 degrees */
4600 { size_t
4601 i,j,x,y;
4602 double
4603 *k,t;
4604 k=kernel->values;
4605 for( i=0, x=kernel->width-1; i<=x; i++, x--)
4606 for( j=0, y=kernel->height-1; j<y; j++, y--)
4607 { t = k[i+j*kernel->width];
4608 k[i+j*kernel->width] = k[j+x*kernel->width];
4609 k[j+x*kernel->width] = k[x+y*kernel->width];
4610 k[x+y*kernel->width] = k[y+i*kernel->width];
4611 k[y+i*kernel->width] = t;
4612 }
4613 }
4614 /* rotate the origin - relative to center of array */
4615 { ssize_t x,y;
4616 x = (ssize_t) (kernel->x*2-kernel->width+1);
4617 y = (ssize_t) (kernel->y*2-kernel->height+1);
4618 kernel->x = (ssize_t) ( -y +(ssize_t) kernel->width-1)/2;
4619 kernel->y = (ssize_t) ( +x +(ssize_t) kernel->height-1)/2;
4620 }
4621 angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */
4622 kernel->angle = fmod(kernel->angle+90.0, 360.0);
4623 }
4624 else
4625 perror("Unable to rotate a non-square, non-linear kernel 90 degrees");
4626 }
4627 if ( 135.0 < angle && angle <= 225.0 )
4628 {
4629 /* For a 180 degree rotation - also know as a reflection
4630 * This is actually a very very common operation!
4631 * Basically all that is needed is a reversal of the kernel data!
4632 * And a reflection of the origin
4633 */
4634 double
4635 t;
4636
4637 double
4638 *k;
4639
4640 size_t
4641 i,
4642 j;
4643
4644 k=kernel->values;
4645 for ( i=0, j=kernel->width*kernel->height-1; i<j; i++, j--)
4646 t=k[i], k[i]=k[j], k[j]=t;
4647
4648 kernel->x = (ssize_t) kernel->width - kernel->x - 1;
4649 kernel->y = (ssize_t) kernel->height - kernel->y - 1;
4650 angle = fmod(angle-180.0, 360.0); /* angle+180 degrees */
4651 kernel->angle = fmod(kernel->angle+180.0, 360.0);
4652 }
4653 /* At this point angle should at least between -45 (315) and +45 degrees
4654 * In the future some form of non-orthogonal angled rotates could be
4655 * performed here, possibly with a linear kernel restriction.
4656 */
4657
4658 return;
4659}
4660
4661
4662/*
4663%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4664% %
4665% %
4666% %
4667% S c a l e G e o m e t r y K e r n e l I n f o %
4668% %
4669% %
4670% %
4671%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4672%
4673% ScaleGeometryKernelInfo() takes a geometry argument string, typically
4674% provided as a "-set option:convolve:scale {geometry}" user setting,
4675% and modifies the kernel according to the parsed arguments of that setting.
4676%
4677% The first argument (and any normalization flags) are passed to
4678% ScaleKernelInfo() to scale/normalize the kernel. The second argument
4679% is then passed to UnityAddKernelInfo() to add a scaled unity kernel
4680% into the scaled/normalized kernel.
4681%
4682% The format of the ScaleGeometryKernelInfo method is:
4683%
4684% void ScaleGeometryKernelInfo(KernelInfo *kernel,
4685% const double scaling_factor,const MagickStatusType normalize_flags)
4686%
4687% A description of each parameter follows:
4688%
4689% o kernel: the Morphology/Convolution kernel to modify
4690%
4691% o geometry:
4692% The geometry string to parse, typically from the user provided
4693% "-set option:convolve:scale {geometry}" setting.
4694%
4695*/
4696MagickExport void ScaleGeometryKernelInfo (KernelInfo *kernel,
4697 const char *geometry)
4698{
4699 GeometryFlags
4700 flags;
4702 args;
4703
4704 SetGeometryInfo(&args);
4705 flags = (GeometryFlags) ParseGeometry(geometry, &args);
4706
4707#if 0
4708 /* For Debugging Geometry Input */
4709 (void) FormatLocaleFile(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n",
4710 flags, args.rho, args.sigma, args.xi, args.psi );
4711#endif
4712
4713 if ( (flags & PercentValue) != 0 ) /* Handle Percentage flag*/
4714 args.rho *= 0.01, args.sigma *= 0.01;
4715
4716 if ( (flags & RhoValue) == 0 ) /* Set Defaults for missing args */
4717 args.rho = 1.0;
4718 if ( (flags & SigmaValue) == 0 )
4719 args.sigma = 0.0;
4720
4721 /* Scale/Normalize the input kernel */
4722 ScaleKernelInfo(kernel, args.rho, flags);
4723
4724 /* Add Unity Kernel, for blending with original */
4725 if ( (flags & SigmaValue) != 0 )
4726 UnityAddKernelInfo(kernel, args.sigma);
4727
4728 return;
4729}
4730/*
4731%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4732% %
4733% %
4734% %
4735% S c a l e K e r n e l I n f o %
4736% %
4737% %
4738% %
4739%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4740%
4741% ScaleKernelInfo() scales the given kernel list by the given amount, with or
4742% without normalization of the sum of the kernel values (as per given flags).
4743%
4744% By default (no flags given) the values within the kernel is scaled
4745% directly using given scaling factor without change.
4746%
4747% If either of the two 'normalize_flags' are given the kernel will first be
4748% normalized and then further scaled by the scaling factor value given.
4749%
4750% Kernel normalization ('normalize_flags' given) is designed to ensure that
4751% any use of the kernel scaling factor with 'Convolve' or 'Correlate'
4752% morphology methods will fall into -1.0 to +1.0 range. Note that for
4753% non-HDRI versions of IM this may cause images to have any negative results
4754% clipped, unless some 'bias' is used.
4755%
4756% More specifically. Kernels which only contain positive values (such as a
4757% 'Gaussian' kernel) will be scaled so that those values sum to +1.0,
4758% ensuring a 0.0 to +1.0 output range for non-HDRI images.
4759%
4760% For Kernels that contain some negative values, (such as 'Sharpen' kernels)
4761% the kernel will be scaled by the absolute of the sum of kernel values, so
4762% that it will generally fall within the +/- 1.0 range.
4763%
4764% For kernels whose values sum to zero, (such as 'Laplacian' kernels) kernel
4765% will be scaled by just the sum of the positive values, so that its output
4766% range will again fall into the +/- 1.0 range.
4767%
4768% For special kernels designed for locating shapes using 'Correlate', (often
4769% only containing +1 and -1 values, representing foreground/background
4770% matching) a special normalization method is provided to scale the positive
4771% values separately to those of the negative values, so the kernel will be
4772% forced to become a zero-sum kernel better suited to such searches.
4773%
4774% WARNING: Correct normalization of the kernel assumes that the '*_range'
4775% attributes within the kernel structure have been correctly set during the
4776% kernels creation.
4777%
4778% NOTE: The values used for 'normalize_flags' have been selected specifically
4779% to match the use of geometry options, so that '!' means NormalizeValue, '^'
4780% means CorrelateNormalizeValue. All other GeometryFlags values are ignored.
4781%
4782% The format of the ScaleKernelInfo method is:
4783%
4784% void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor,
4785% const MagickStatusType normalize_flags )
4786%
4787% A description of each parameter follows:
4788%
4789% o kernel: the Morphology/Convolution kernel
4790%
4791% o scaling_factor:
4792% multiply all values (after normalization) by this factor if not
4793% zero. If the kernel is normalized regardless of any flags.
4794%
4795% o normalize_flags:
4796% GeometryFlags defining normalization method to use.
4797% specifically: NormalizeValue, CorrelateNormalizeValue,
4798% and/or PercentValue
4799%
4800*/
4801MagickExport void ScaleKernelInfo(KernelInfo *kernel,
4802 const double scaling_factor,const GeometryFlags normalize_flags)
4803{
4804 ssize_t
4805 i;
4806
4807 double
4808 pos_scale,
4809 neg_scale;
4810
4811 /* do the other kernels in a multi-kernel list first */
4812 if ( kernel->next != (KernelInfo *) NULL)
4813 ScaleKernelInfo(kernel->next, scaling_factor, normalize_flags);
4814
4815 /* Normalization of Kernel */
4816 pos_scale = 1.0;
4817 if ( (normalize_flags&NormalizeValue) != 0 ) {
4818 if ( fabs(kernel->positive_range + kernel->negative_range) >= MagickEpsilon )
4819 /* non-zero-summing kernel (generally positive) */
4820 pos_scale = fabs(kernel->positive_range + kernel->negative_range);
4821 else
4822 /* zero-summing kernel */
4823 pos_scale = kernel->positive_range;
4824 }
4825 /* Force kernel into a normalized zero-summing kernel */
4826 if ( (normalize_flags&CorrelateNormalizeValue) != 0 ) {
4827 pos_scale = ( fabs(kernel->positive_range) >= MagickEpsilon )
4828 ? kernel->positive_range : 1.0;
4829 neg_scale = ( fabs(kernel->negative_range) >= MagickEpsilon )
4830 ? -kernel->negative_range : 1.0;
4831 }
4832 else
4833 neg_scale = pos_scale;
4834
4835 /* finalize scaling_factor for positive and negative components */
4836 pos_scale = scaling_factor/pos_scale;
4837 neg_scale = scaling_factor/neg_scale;
4838
4839 for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++)
4840 if ( ! IsNaN(kernel->values[i]) )
4841 kernel->values[i] *= (kernel->values[i] >= 0) ? pos_scale : neg_scale;
4842
4843 /* convolution output range */
4844 kernel->positive_range *= pos_scale;
4845 kernel->negative_range *= neg_scale;
4846 /* maximum and minimum values in kernel */
4847 kernel->maximum *= (kernel->maximum >= 0.0) ? pos_scale : neg_scale;
4848 kernel->minimum *= (kernel->minimum >= 0.0) ? pos_scale : neg_scale;
4849
4850 /* swap kernel settings if user's scaling factor is negative */
4851 if ( scaling_factor < MagickEpsilon ) {
4852 double t;
4853 t = kernel->positive_range;
4854 kernel->positive_range = kernel->negative_range;
4855 kernel->negative_range = t;
4856 t = kernel->maximum;
4857 kernel->maximum = kernel->minimum;
4858 kernel->minimum = 1;
4859 }
4860
4861 return;
4862}
4863
4864
4865/*
4866%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4867% %
4868% %
4869% %
4870% S h o w K e r n e l I n f o %
4871% %
4872% %
4873% %
4874%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4875%
4876% ShowKernelInfo() outputs the details of the given kernel defination to
4877% standard error, generally due to a users 'showKernel' option request.
4878%
4879% The format of the ShowKernelInfo method is:
4880%
4881% void ShowKernelInfo(const KernelInfo *kernel)
4882%
4883% A description of each parameter follows:
4884%
4885% o kernel: the Morphology/Convolution kernel
4886%
4887*/
4888MagickExport void ShowKernelInfo(const KernelInfo *kernel)
4889{
4890 const KernelInfo
4891 *k;
4892
4893 size_t
4894 c, i, u, v;
4895
4896 for (c=0, k=kernel; k != (KernelInfo *) NULL; c++, k=k->next ) {
4897
4898 (void) FormatLocaleFile(stderr, "Kernel");
4899 if ( kernel->next != (KernelInfo *) NULL )
4900 (void) FormatLocaleFile(stderr, " #%lu", (unsigned long) c );
4901 (void) FormatLocaleFile(stderr, " \"%s",
4902 CommandOptionToMnemonic(MagickKernelOptions, k->type) );
4903 if ( fabs(k->angle) >= MagickEpsilon )
4904 (void) FormatLocaleFile(stderr, "@%lg", k->angle);
4905 (void) FormatLocaleFile(stderr, "\" of size %lux%lu%+ld%+ld",(unsigned long)
4906 k->width,(unsigned long) k->height,(long) k->x,(long) k->y);
4907 (void) FormatLocaleFile(stderr,
4908 " with values from %.*lg to %.*lg\n",
4909 GetMagickPrecision(), k->minimum,
4910 GetMagickPrecision(), k->maximum);
4911 (void) FormatLocaleFile(stderr, "Forming a output range from %.*lg to %.*lg",
4912 GetMagickPrecision(), k->negative_range,
4913 GetMagickPrecision(), k->positive_range);
4914 if ( fabs(k->positive_range+k->negative_range) < MagickEpsilon )
4915 (void) FormatLocaleFile(stderr, " (Zero-Summing)\n");
4916 else if ( fabs(k->positive_range+k->negative_range-1.0) < MagickEpsilon )
4917 (void) FormatLocaleFile(stderr, " (Normalized)\n");
4918 else
4919 (void) FormatLocaleFile(stderr, " (Sum %.*lg)\n",
4920 GetMagickPrecision(), k->positive_range+k->negative_range);
4921 for (i=v=0; v < k->height; v++) {
4922 (void) FormatLocaleFile(stderr, "%2lu:", (unsigned long) v );
4923 for (u=0; u < k->width; u++, i++)
4924 if ( IsNaN(k->values[i]) )
4925 (void) FormatLocaleFile(stderr," %*s", GetMagickPrecision()+3, "nan");
4926 else
4927 (void) FormatLocaleFile(stderr," %*.*lg", GetMagickPrecision()+3,
4928 GetMagickPrecision(), k->values[i]);
4929 (void) FormatLocaleFile(stderr,"\n");
4930 }
4931 }
4932}
4933
4934
4935/*
4936%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4937% %
4938% %
4939% %
4940% U n i t y A d d K e r n a l I n f o %
4941% %
4942% %
4943% %
4944%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4945%
4946% UnityAddKernelInfo() Adds a given amount of the 'Unity' Convolution Kernel
4947% to the given pre-scaled and normalized Kernel. This in effect adds that
4948% amount of the original image into the resulting convolution kernel. This
4949% value is usually provided by the user as a percentage value in the
4950% 'convolve:scale' setting.
4951%
4952% The resulting effect is to convert the defined kernels into blended
4953% soft-blurs, unsharp kernels or into sharpening kernels.
4954%
4955% The format of the UnityAdditionKernelInfo method is:
4956%
4957% void UnityAdditionKernelInfo(KernelInfo *kernel, const double scale )
4958%
4959% A description of each parameter follows:
4960%
4961% o kernel: the Morphology/Convolution kernel
4962%
4963% o scale:
4964% scaling factor for the unity kernel to be added to
4965% the given kernel.
4966%
4967*/
4968MagickExport void UnityAddKernelInfo(KernelInfo *kernel,
4969 const double scale)
4970{
4971 /* do the other kernels in a multi-kernel list first */
4972 if ( kernel->next != (KernelInfo *) NULL)
4973 UnityAddKernelInfo(kernel->next, scale);
4974
4975 /* Add the scaled unity kernel to the existing kernel */
4976 kernel->values[kernel->x+kernel->y*kernel->width] += scale;
4977 CalcKernelMetaData(kernel); /* recalculate the meta-data */
4978
4979 return;
4980}
4981
4982
4983/*
4984%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4985% %
4986% %
4987% %
4988% Z e r o K e r n e l N a n s %
4989% %
4990% %
4991% %
4992%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4993%
4994% ZeroKernelNans() replaces any special 'nan' value that may be present in
4995% the kernel with a zero value. This is typically done when the kernel will
4996% be used in special hardware (GPU) convolution processors, to simply
4997% matters.
4998%
4999% The format of the ZeroKernelNans method is:
5000%
5001% void ZeroKernelNans (KernelInfo *kernel)
5002%
5003% A description of each parameter follows:
5004%
5005% o kernel: the Morphology/Convolution kernel
5006%
5007*/
5008MagickExport void ZeroKernelNans(KernelInfo *kernel)
5009{
5010 size_t
5011 i;
5012
5013 /* do the other kernels in a multi-kernel list first */
5014 if ( kernel->next != (KernelInfo *) NULL)
5015 ZeroKernelNans(kernel->next);
5016
5017 for (i=0; i < (kernel->width*kernel->height); i++)
5018 if ( IsNaN(kernel->values[i]) )
5019 kernel->values[i] = 0.0;
5020
5021 return;
5022}